简单李代数中幂零轨道的投影与共享轨道

IF 0.5 4区 数学 Q3 MATHEMATICS
Dmitri I. Panyushev
{"title":"简单李代数中幂零轨道的投影与共享轨道","authors":"Dmitri I. Panyushev","doi":"10.1007/s10468-025-10322-z","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>G</i> be a simple algebraic group and <span>\\(\\mathcal {O}\\subset {\\mathfrak g}={\\mathrm {Lie\\,}}G\\)</span> a nilpotent orbit. If <i>H</i> is a reductive subgroup of <i>G</i> with <span>\\({\\mathfrak h}={\\mathrm {Lie\\,}}H\\)</span>, then <span>\\({\\mathfrak g}={\\mathfrak h}\\oplus {\\mathfrak m}\\)</span>, where <span>\\({\\mathfrak m}={\\mathfrak h}^\\perp \\)</span>. We consider the natural projections <span>\\(\\varvec{\\varphi }: \\overline{\\mathcal {O}}\\rightarrow \\mathfrak {h}\\)</span> and <span>\\(\\varvec{\\psi }: \\overline{\\mathcal {O}}\\rightarrow \\mathfrak {m}\\)</span> and two related properties of <span>\\((H, \\mathcal {O})\\)</span>: </p><div><div><span>$$ (\\mathcal {P}_1): \\overline{\\mathcal {O}}\\cap {\\mathfrak m}=\\{0\\}; \\qquad (\\mathcal {P}_2): H \\text { has a dense orbit in } \\mathcal {O}. $$</span></div></div><p>It is shown that either of these properties implies that <i>H</i> is semisimple. We prove that <span>\\((\\mathcal {P}_1)\\)</span> implies <span>\\((\\mathcal {P}_2)\\)</span> for all <span>\\(\\mathcal {O}\\)</span> and the converse holds for <span>\\(\\mathcal {O}_\\textsf{min}\\)</span>, the minimal nilpotent orbit. If <span>\\((\\mathcal {P}_1)\\)</span> holds, then <span>\\(\\varvec{\\varphi }\\)</span> is finite and <span>\\([\\varvec{\\varphi }(e),\\varvec{\\psi }(e)]=0\\)</span> for all <span>\\(e\\in \\mathcal {O}\\)</span>. Then <span>\\(\\overline{\\varvec{\\varphi }(\\mathcal {O})}\\)</span> is the closure of a nilpotent <i>H</i>-orbit <span>\\(\\mathcal {O}'\\)</span>. The orbit <span>\\(\\mathcal {O}'\\)</span> is “shared” in the sense of Brylinski–Kostant (J. Am. Math. Soc. <b>7</b>(2), 269–298 1994). We obtain a classification of all pairs <span>\\((H,\\mathcal {O})\\)</span> with property <span>\\((\\mathcal {P}_1)\\)</span> and discuss various relations between <span>\\(\\mathcal {O}\\)</span> and <span>\\(\\mathcal {O}'\\)</span>. In particular, we detect an omission in the list of pairs of simple groups (<i>H</i>, <i>G</i>) having a shared orbit that was given by Brylinski and Kostant. It is also proved that <span>\\((\\mathcal {P}_1)\\)</span> for <span>\\((H,\\mathcal {O}_\\textsf{min})\\)</span> implies that <span>\\(\\overline{G{\\cdot }\\varvec{\\varphi }(\\mathcal {O}_\\textsf{min})}=\\overline{G{\\cdot }\\varvec{\\psi }(\\mathcal {O}_\\textsf{min})}\\)</span>.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"28 2","pages":"423 - 444"},"PeriodicalIF":0.5000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Projections of Nilpotent Orbits in a Simple Lie Algebra and Shared Orbits\",\"authors\":\"Dmitri I. Panyushev\",\"doi\":\"10.1007/s10468-025-10322-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>G</i> be a simple algebraic group and <span>\\\\(\\\\mathcal {O}\\\\subset {\\\\mathfrak g}={\\\\mathrm {Lie\\\\,}}G\\\\)</span> a nilpotent orbit. If <i>H</i> is a reductive subgroup of <i>G</i> with <span>\\\\({\\\\mathfrak h}={\\\\mathrm {Lie\\\\,}}H\\\\)</span>, then <span>\\\\({\\\\mathfrak g}={\\\\mathfrak h}\\\\oplus {\\\\mathfrak m}\\\\)</span>, where <span>\\\\({\\\\mathfrak m}={\\\\mathfrak h}^\\\\perp \\\\)</span>. We consider the natural projections <span>\\\\(\\\\varvec{\\\\varphi }: \\\\overline{\\\\mathcal {O}}\\\\rightarrow \\\\mathfrak {h}\\\\)</span> and <span>\\\\(\\\\varvec{\\\\psi }: \\\\overline{\\\\mathcal {O}}\\\\rightarrow \\\\mathfrak {m}\\\\)</span> and two related properties of <span>\\\\((H, \\\\mathcal {O})\\\\)</span>: </p><div><div><span>$$ (\\\\mathcal {P}_1): \\\\overline{\\\\mathcal {O}}\\\\cap {\\\\mathfrak m}=\\\\{0\\\\}; \\\\qquad (\\\\mathcal {P}_2): H \\\\text { has a dense orbit in } \\\\mathcal {O}. $$</span></div></div><p>It is shown that either of these properties implies that <i>H</i> is semisimple. We prove that <span>\\\\((\\\\mathcal {P}_1)\\\\)</span> implies <span>\\\\((\\\\mathcal {P}_2)\\\\)</span> for all <span>\\\\(\\\\mathcal {O}\\\\)</span> and the converse holds for <span>\\\\(\\\\mathcal {O}_\\\\textsf{min}\\\\)</span>, the minimal nilpotent orbit. If <span>\\\\((\\\\mathcal {P}_1)\\\\)</span> holds, then <span>\\\\(\\\\varvec{\\\\varphi }\\\\)</span> is finite and <span>\\\\([\\\\varvec{\\\\varphi }(e),\\\\varvec{\\\\psi }(e)]=0\\\\)</span> for all <span>\\\\(e\\\\in \\\\mathcal {O}\\\\)</span>. Then <span>\\\\(\\\\overline{\\\\varvec{\\\\varphi }(\\\\mathcal {O})}\\\\)</span> is the closure of a nilpotent <i>H</i>-orbit <span>\\\\(\\\\mathcal {O}'\\\\)</span>. The orbit <span>\\\\(\\\\mathcal {O}'\\\\)</span> is “shared” in the sense of Brylinski–Kostant (J. Am. Math. Soc. <b>7</b>(2), 269–298 1994). We obtain a classification of all pairs <span>\\\\((H,\\\\mathcal {O})\\\\)</span> with property <span>\\\\((\\\\mathcal {P}_1)\\\\)</span> and discuss various relations between <span>\\\\(\\\\mathcal {O}\\\\)</span> and <span>\\\\(\\\\mathcal {O}'\\\\)</span>. In particular, we detect an omission in the list of pairs of simple groups (<i>H</i>, <i>G</i>) having a shared orbit that was given by Brylinski and Kostant. It is also proved that <span>\\\\((\\\\mathcal {P}_1)\\\\)</span> for <span>\\\\((H,\\\\mathcal {O}_\\\\textsf{min})\\\\)</span> implies that <span>\\\\(\\\\overline{G{\\\\cdot }\\\\varvec{\\\\varphi }(\\\\mathcal {O}_\\\\textsf{min})}=\\\\overline{G{\\\\cdot }\\\\varvec{\\\\psi }(\\\\mathcal {O}_\\\\textsf{min})}\\\\)</span>.</p></div>\",\"PeriodicalId\":50825,\"journal\":{\"name\":\"Algebras and Representation Theory\",\"volume\":\"28 2\",\"pages\":\"423 - 444\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebras and Representation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-025-10322-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-025-10322-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设G是一个简单代数群,\(\mathcal {O}\subset {\mathfrak g}={\mathrm {Lie\,}}G\)是一个幂零轨道。如果H是具有\({\mathfrak h}={\mathrm {Lie\,}}H\)的G的约化子群,则\({\mathfrak g}={\mathfrak h}\oplus {\mathfrak m}\),其中\({\mathfrak m}={\mathfrak h}^\perp \)。我们考虑自然投影\(\varvec{\varphi }: \overline{\mathcal {O}}\rightarrow \mathfrak {h}\)和\(\varvec{\psi }: \overline{\mathcal {O}}\rightarrow \mathfrak {m}\)以及\((H, \mathcal {O})\)的两个相关性质:$$ (\mathcal {P}_1): \overline{\mathcal {O}}\cap {\mathfrak m}=\{0\}; \qquad (\mathcal {P}_2): H \text { has a dense orbit in } \mathcal {O}. $$。结果表明,这两个性质中的任何一个都意味着H是半单质的。我们证明了对于所有的\(\mathcal {O}\), \((\mathcal {P}_1)\)意味着\((\mathcal {P}_2)\),对于最小幂零轨道\(\mathcal {O}_\textsf{min}\),反之成立。如果\((\mathcal {P}_1)\)成立,那么\(\varvec{\varphi }\)是有限的,\([\varvec{\varphi }(e),\varvec{\psi }(e)]=0\)适用于所有\(e\in \mathcal {O}\)。那么\(\overline{\varvec{\varphi }(\mathcal {O})}\)是幂零h轨道的闭合\(\mathcal {O}'\)。轨道\(\mathcal {O}'\)在Brylinski-Kostant的意义上是“共享的”。数学。社会科学,7(2),269-298 1994)。我们得到了性质为\((\mathcal {P}_1)\)的所有对\((H,\mathcal {O})\)的分类,并讨论了\(\mathcal {O}\)与\(\mathcal {O}'\)之间的各种关系。特别地,我们在Brylinski和Kostant给出的具有共享轨道的简单群(H, G)对列表中发现了一个遗漏。还证明了\((H,\mathcal {O}_\textsf{min})\)的\((\mathcal {P}_1)\)意味着\(\overline{G{\cdot }\varvec{\varphi }(\mathcal {O}_\textsf{min})}=\overline{G{\cdot }\varvec{\psi }(\mathcal {O}_\textsf{min})}\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Projections of Nilpotent Orbits in a Simple Lie Algebra and Shared Orbits

Let G be a simple algebraic group and \(\mathcal {O}\subset {\mathfrak g}={\mathrm {Lie\,}}G\) a nilpotent orbit. If H is a reductive subgroup of G with \({\mathfrak h}={\mathrm {Lie\,}}H\), then \({\mathfrak g}={\mathfrak h}\oplus {\mathfrak m}\), where \({\mathfrak m}={\mathfrak h}^\perp \). We consider the natural projections \(\varvec{\varphi }: \overline{\mathcal {O}}\rightarrow \mathfrak {h}\) and \(\varvec{\psi }: \overline{\mathcal {O}}\rightarrow \mathfrak {m}\) and two related properties of \((H, \mathcal {O})\):

$$ (\mathcal {P}_1): \overline{\mathcal {O}}\cap {\mathfrak m}=\{0\}; \qquad (\mathcal {P}_2): H \text { has a dense orbit in } \mathcal {O}. $$

It is shown that either of these properties implies that H is semisimple. We prove that \((\mathcal {P}_1)\) implies \((\mathcal {P}_2)\) for all \(\mathcal {O}\) and the converse holds for \(\mathcal {O}_\textsf{min}\), the minimal nilpotent orbit. If \((\mathcal {P}_1)\) holds, then \(\varvec{\varphi }\) is finite and \([\varvec{\varphi }(e),\varvec{\psi }(e)]=0\) for all \(e\in \mathcal {O}\). Then \(\overline{\varvec{\varphi }(\mathcal {O})}\) is the closure of a nilpotent H-orbit \(\mathcal {O}'\). The orbit \(\mathcal {O}'\) is “shared” in the sense of Brylinski–Kostant (J. Am. Math. Soc. 7(2), 269–298 1994). We obtain a classification of all pairs \((H,\mathcal {O})\) with property \((\mathcal {P}_1)\) and discuss various relations between \(\mathcal {O}\) and \(\mathcal {O}'\). In particular, we detect an omission in the list of pairs of simple groups (HG) having a shared orbit that was given by Brylinski and Kostant. It is also proved that \((\mathcal {P}_1)\) for \((H,\mathcal {O}_\textsf{min})\) implies that \(\overline{G{\cdot }\varvec{\varphi }(\mathcal {O}_\textsf{min})}=\overline{G{\cdot }\varvec{\psi }(\mathcal {O}_\textsf{min})}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups. The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信