双模型简单正则表示\((2,\,2)\)在Laurent级数域上的部分分类

IF 0.6 4区 数学 Q3 MATHEMATICS
Hernán Giraldo, David Reynoso-Mercado, Pedro Rizzo
{"title":"双模型简单正则表示\\((2,\\,2)\\)在Laurent级数域上的部分分类","authors":"Hernán Giraldo,&nbsp;David Reynoso-Mercado,&nbsp;Pedro Rizzo","doi":"10.1007/s10468-025-10327-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we use Galois descent techniques to find suitable representatives of the regular simple representations of the species of type (2, 2) over <span>\\(k_n:= k[\\varepsilon ^{1/n}]\\)</span>, where <i>n</i> is a positive integer and <span>\\(k:=\\mathbb {C}(\\!(\\varepsilon )\\!)\\)</span> is the field of Laurent series over the complexes. These regular representations are essential for the definition of canonical algebras. Our work is inspired by the work done for species of type (1, 4) on <i>k</i> in Geiss and Reynoso-Mercado (Bol. Soc. Mat. Mex. <b>30</b>(3):87, 2024). We presents all the regular simple representations on the <i>n</i>-crown quiver, and from these, we establish a partial classification of regular simple representations of bimodules type (2, 2).</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"28 2","pages":"549 - 577"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-025-10327-8.pdf","citationCount":"0","resultStr":"{\"title\":\"A Partial Classification of Simple Regular Representations of Bimodules Type \\\\((2,\\\\,2)\\\\) Over the Field of Laurent Series\",\"authors\":\"Hernán Giraldo,&nbsp;David Reynoso-Mercado,&nbsp;Pedro Rizzo\",\"doi\":\"10.1007/s10468-025-10327-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we use Galois descent techniques to find suitable representatives of the regular simple representations of the species of type (2, 2) over <span>\\\\(k_n:= k[\\\\varepsilon ^{1/n}]\\\\)</span>, where <i>n</i> is a positive integer and <span>\\\\(k:=\\\\mathbb {C}(\\\\!(\\\\varepsilon )\\\\!)\\\\)</span> is the field of Laurent series over the complexes. These regular representations are essential for the definition of canonical algebras. Our work is inspired by the work done for species of type (1, 4) on <i>k</i> in Geiss and Reynoso-Mercado (Bol. Soc. Mat. Mex. <b>30</b>(3):87, 2024). We presents all the regular simple representations on the <i>n</i>-crown quiver, and from these, we establish a partial classification of regular simple representations of bimodules type (2, 2).</p></div>\",\"PeriodicalId\":50825,\"journal\":{\"name\":\"Algebras and Representation Theory\",\"volume\":\"28 2\",\"pages\":\"549 - 577\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10468-025-10327-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebras and Representation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-025-10327-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-025-10327-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们使用伽罗瓦下降技术寻找\(k_n:= k[\varepsilon ^{1/n}]\)上(2,2)型种的正则简单表示的合适表示,其中n是正整数,\(k:=\mathbb {C}(\!(\varepsilon )\!)\)是复上的Laurent级数的域。这些正则表示对于正则代数的定义是必不可少的。我们的工作受到Geiss和Reynoso-Mercado (Bol)对k上的(1,4)型物种的研究的启发。Soc。马太福音30(3):87,2024)。我们给出了n-冠颤振上的所有正则简单表示,并由此建立了双模型正则简单表示的部分分类(2,2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Partial Classification of Simple Regular Representations of Bimodules Type \((2,\,2)\) Over the Field of Laurent Series

In this paper, we use Galois descent techniques to find suitable representatives of the regular simple representations of the species of type (2, 2) over \(k_n:= k[\varepsilon ^{1/n}]\), where n is a positive integer and \(k:=\mathbb {C}(\!(\varepsilon )\!)\) is the field of Laurent series over the complexes. These regular representations are essential for the definition of canonical algebras. Our work is inspired by the work done for species of type (1, 4) on k in Geiss and Reynoso-Mercado (Bol. Soc. Mat. Mex. 30(3):87, 2024). We presents all the regular simple representations on the n-crown quiver, and from these, we establish a partial classification of regular simple representations of bimodules type (2, 2).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups. The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信