Catherine Unsworth, Andrew B. Dwyer, Alison C. Savage, James J. Hobson, Jonathan Massam, Tom O. McDonald, Paul Curley, Andrew Owen, Andrew O'Sullivan, Ronan MacLoughlin and Steve P. Rannard
{"title":"纳米固体药物分散体的研制,用于通过振动网雾化给药奈洛沙胺和硝唑昔尼特肺输送","authors":"Catherine Unsworth, Andrew B. Dwyer, Alison C. Savage, James J. Hobson, Jonathan Massam, Tom O. McDonald, Paul Curley, Andrew Owen, Andrew O'Sullivan, Ronan MacLoughlin and Steve P. Rannard","doi":"10.1039/D5PM00006H","DOIUrl":null,"url":null,"abstract":"<p >The optimum delivery of very poorly soluble drug compounds is challenging, especially if targeting of disease sites is required. Delivery to the lung is hampered by a range of physiological issues, and inhalation may be the most appropriate route. When breathing is compromised by infection or poor lung capacity, nebulisation may enable therapeutics to be carried deep into the respiratory tract. Here we report the development of nebulised aqueous formulations of two highly water-insoluble drugs with demonstrated anti-SARS-CoV-2 activity and evaluate their pulmonary delivery using <em>in vitro</em> models that include the breathing patterns of children and COVID-19 infected adults.</p>","PeriodicalId":101141,"journal":{"name":"RSC Pharmaceutics","volume":" 3","pages":" 517-526"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/pm/d5pm00006h?page=search","citationCount":"0","resultStr":"{\"title\":\"Development of solid drug nanoparticle dispersions for pulmonary delivery of niclosamide and nitazoxanide via vibrating mesh nebulisation†\",\"authors\":\"Catherine Unsworth, Andrew B. Dwyer, Alison C. Savage, James J. Hobson, Jonathan Massam, Tom O. McDonald, Paul Curley, Andrew Owen, Andrew O'Sullivan, Ronan MacLoughlin and Steve P. Rannard\",\"doi\":\"10.1039/D5PM00006H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The optimum delivery of very poorly soluble drug compounds is challenging, especially if targeting of disease sites is required. Delivery to the lung is hampered by a range of physiological issues, and inhalation may be the most appropriate route. When breathing is compromised by infection or poor lung capacity, nebulisation may enable therapeutics to be carried deep into the respiratory tract. Here we report the development of nebulised aqueous formulations of two highly water-insoluble drugs with demonstrated anti-SARS-CoV-2 activity and evaluate their pulmonary delivery using <em>in vitro</em> models that include the breathing patterns of children and COVID-19 infected adults.</p>\",\"PeriodicalId\":101141,\"journal\":{\"name\":\"RSC Pharmaceutics\",\"volume\":\" 3\",\"pages\":\" 517-526\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/pm/d5pm00006h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Pharmaceutics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/pm/d5pm00006h\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Pharmaceutics","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/pm/d5pm00006h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of solid drug nanoparticle dispersions for pulmonary delivery of niclosamide and nitazoxanide via vibrating mesh nebulisation†
The optimum delivery of very poorly soluble drug compounds is challenging, especially if targeting of disease sites is required. Delivery to the lung is hampered by a range of physiological issues, and inhalation may be the most appropriate route. When breathing is compromised by infection or poor lung capacity, nebulisation may enable therapeutics to be carried deep into the respiratory tract. Here we report the development of nebulised aqueous formulations of two highly water-insoluble drugs with demonstrated anti-SARS-CoV-2 activity and evaluate their pulmonary delivery using in vitro models that include the breathing patterns of children and COVID-19 infected adults.