光致自杀菌聚丙烯/氧化锌/聚多巴胺- tempo复合膜

IF 9.9 2区 材料科学 Q1 Engineering
Huajie Wang , Hao Peng , Wenhao Ji , Jiaxin Wang , Xiaoyan Du , Wen Song , Wen Zhang , Fazli Wahid , Ali Raza
{"title":"光致自杀菌聚丙烯/氧化锌/聚多巴胺- tempo复合膜","authors":"Huajie Wang ,&nbsp;Hao Peng ,&nbsp;Wenhao Ji ,&nbsp;Jiaxin Wang ,&nbsp;Xiaoyan Du ,&nbsp;Wen Song ,&nbsp;Wen Zhang ,&nbsp;Fazli Wahid ,&nbsp;Ali Raza","doi":"10.1016/j.nanoms.2024.04.012","DOIUrl":null,"url":null,"abstract":"<div><div>Face masks play a pivotal role in preventing infection transmission. However, the capture of infection-sourced particles in face masks poses challenges related to reuse, necessitating proper disposal. We developed a self-sterilizable polypropylene-based membrane for face masks to address challenges associated with infection transmission prevention. The membrane, created using 3D printing, underwent functionalization with zinc oxide (ZnO) and polydopamine (PDA)-TEMPO to achieve broad-spectrum light absorption and facilitate self-sterilization through photocatalytic and photothermal effects upon light exposure. The hydrophobic surface (water contact angle: 133 ​± ​2°) minimized moisture accumulation, and the membrane exhibited robust mechanical properties, including shear strength (1.25 ​± ​0.5 ​kPa) and peel resistance strength (112.8 ​± ​11.2 ​kPa). The evaluation demonstrated stability in airflow (0–500 ​cm<sup>3</sup>/s) and excellent aerosol filtration efficiency (94.8 ​± ​0.6 %) for particles (PM 0.3, PM 2.5, PM 10), comparable to commercial masks. The membrane showed antibacterial efficacy over five uses in a simulated respiratory environment. Safety assessments confirmed biocompatibility through cytocompatibility and skin irritation assays. In conclusion, this membrane offers efficient filtration and photo-triggered sterilization, presenting a promising solution for next-generation face masks to address concerns related to reuse, disposal, and infection control.</div></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"7 2","pages":"Pages 276-288"},"PeriodicalIF":9.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photo-responsive polypropylene/zinc oxide/polydopamine-TEMPO composite membranes with light-induced self-sterilization\",\"authors\":\"Huajie Wang ,&nbsp;Hao Peng ,&nbsp;Wenhao Ji ,&nbsp;Jiaxin Wang ,&nbsp;Xiaoyan Du ,&nbsp;Wen Song ,&nbsp;Wen Zhang ,&nbsp;Fazli Wahid ,&nbsp;Ali Raza\",\"doi\":\"10.1016/j.nanoms.2024.04.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Face masks play a pivotal role in preventing infection transmission. However, the capture of infection-sourced particles in face masks poses challenges related to reuse, necessitating proper disposal. We developed a self-sterilizable polypropylene-based membrane for face masks to address challenges associated with infection transmission prevention. The membrane, created using 3D printing, underwent functionalization with zinc oxide (ZnO) and polydopamine (PDA)-TEMPO to achieve broad-spectrum light absorption and facilitate self-sterilization through photocatalytic and photothermal effects upon light exposure. The hydrophobic surface (water contact angle: 133 ​± ​2°) minimized moisture accumulation, and the membrane exhibited robust mechanical properties, including shear strength (1.25 ​± ​0.5 ​kPa) and peel resistance strength (112.8 ​± ​11.2 ​kPa). The evaluation demonstrated stability in airflow (0–500 ​cm<sup>3</sup>/s) and excellent aerosol filtration efficiency (94.8 ​± ​0.6 %) for particles (PM 0.3, PM 2.5, PM 10), comparable to commercial masks. The membrane showed antibacterial efficacy over five uses in a simulated respiratory environment. Safety assessments confirmed biocompatibility through cytocompatibility and skin irritation assays. In conclusion, this membrane offers efficient filtration and photo-triggered sterilization, presenting a promising solution for next-generation face masks to address concerns related to reuse, disposal, and infection control.</div></div>\",\"PeriodicalId\":33573,\"journal\":{\"name\":\"Nano Materials Science\",\"volume\":\"7 2\",\"pages\":\"Pages 276-288\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Materials Science\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589965124000552\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965124000552","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

口罩在预防感染传播方面发挥着关键作用。然而,在口罩中捕获感染源颗粒带来了与重复使用有关的挑战,需要适当处理。我们开发了一种可自消毒的聚丙烯基口罩膜,以应对与感染传播预防相关的挑战。该膜是用3D打印技术制造的,通过氧化锌(ZnO)和聚多巴胺(PDA)-TEMPO进行功能化,实现广谱光吸收,并通过光催化和光热效应在光照射下促进自杀菌。疏水表面(水接触角为133±2°)最大限度地减少了水分积累,并且膜具有强大的力学性能,包括抗剪强度(1.25±0.5 kPa)和抗剥离强度(112.8±11.2 kPa)。评估表明,气流稳定性(0-500 cm3/s),对颗粒物(PM 0.3, PM 2.5, PM 10)的气溶胶过滤效率(94.8±0.6%)与商用口罩相当。该膜在模拟呼吸环境中显示出五次以上的抗菌效果。安全性评估通过细胞相容性和皮肤刺激试验证实了生物相容性。总之,这种膜提供了高效的过滤和光触发杀菌,为下一代口罩提供了一个有前途的解决方案,以解决与重复使用、处理和感染控制有关的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photo-responsive polypropylene/zinc oxide/polydopamine-TEMPO composite membranes with light-induced self-sterilization
Face masks play a pivotal role in preventing infection transmission. However, the capture of infection-sourced particles in face masks poses challenges related to reuse, necessitating proper disposal. We developed a self-sterilizable polypropylene-based membrane for face masks to address challenges associated with infection transmission prevention. The membrane, created using 3D printing, underwent functionalization with zinc oxide (ZnO) and polydopamine (PDA)-TEMPO to achieve broad-spectrum light absorption and facilitate self-sterilization through photocatalytic and photothermal effects upon light exposure. The hydrophobic surface (water contact angle: 133 ​± ​2°) minimized moisture accumulation, and the membrane exhibited robust mechanical properties, including shear strength (1.25 ​± ​0.5 ​kPa) and peel resistance strength (112.8 ​± ​11.2 ​kPa). The evaluation demonstrated stability in airflow (0–500 ​cm3/s) and excellent aerosol filtration efficiency (94.8 ​± ​0.6 %) for particles (PM 0.3, PM 2.5, PM 10), comparable to commercial masks. The membrane showed antibacterial efficacy over five uses in a simulated respiratory environment. Safety assessments confirmed biocompatibility through cytocompatibility and skin irritation assays. In conclusion, this membrane offers efficient filtration and photo-triggered sterilization, presenting a promising solution for next-generation face masks to address concerns related to reuse, disposal, and infection control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Materials Science
Nano Materials Science Engineering-Mechanics of Materials
CiteScore
20.90
自引率
3.00%
发文量
294
审稿时长
9 weeks
期刊介绍: Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信