Hyo Won Lee , Donald L. DeAngelis , Simeon Yurek , Yannis P. Papastamatiou
{"title":"斑驳景观中涉禽觅食:社会信息、干扰竞争和斑驳选择对猎物摄食和个体分布的模拟效应","authors":"Hyo Won Lee , Donald L. DeAngelis , Simeon Yurek , Yannis P. Papastamatiou","doi":"10.1016/j.ecolmodel.2025.111178","DOIUrl":null,"url":null,"abstract":"<div><div>Foragers on patchy landscapes must acquire sufficient resources despite uncertainty in the location and amount of the resources. Optimal Foraging Theory posits that foragers deal with this uncertainty by using strategies that optimize resource intake within foraging periods. For species such as wading birds, this optimization is closely linked to their survival and reproductive success. Understanding the influence of patch selection on individual resource intake and foraging distribution is therefore crucial. In this study, we simulated how resource distribution, interference competition, and social cues—such as aggregation behaviors—influence resource intake and foraging spatial distribution. We employed an individual-based model simulating wading bird foraging behaviors, with 900 individuals simultaneously foraging across a landscape with unknown resource distribution. Birds employed one of three patch-finding strategies: random, cue-searching, or hybrid, which uses both searching strategies. Each bird decided whether to remain in a patch based on a prey density threshold. We compared the daily resource intake and foraging distribution of birds across different modeled patch-finding strategies, resource distribution patterns, and the presence or absence of interference competition. Wading birds exhibiting aggregation behavior displayed increased intake rates when resources were concentrated and interference minimal. Aggregation behavior led to a closer match with the ideal free distribution when the prey density threshold was optimal. These findings provide theoretical support that aggregation behavior is effective in scenarios where resources are concentrated in a few patches, social cues are used by relatively few individuals, and interference competition is limited.</div></div>","PeriodicalId":51043,"journal":{"name":"Ecological Modelling","volume":"507 ","pages":"Article 111178"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Foraging of wading birds on a patchy landscape: Simulating effects of social information, interference competition, and patch selection on prey intake and individual distribution\",\"authors\":\"Hyo Won Lee , Donald L. DeAngelis , Simeon Yurek , Yannis P. Papastamatiou\",\"doi\":\"10.1016/j.ecolmodel.2025.111178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Foragers on patchy landscapes must acquire sufficient resources despite uncertainty in the location and amount of the resources. Optimal Foraging Theory posits that foragers deal with this uncertainty by using strategies that optimize resource intake within foraging periods. For species such as wading birds, this optimization is closely linked to their survival and reproductive success. Understanding the influence of patch selection on individual resource intake and foraging distribution is therefore crucial. In this study, we simulated how resource distribution, interference competition, and social cues—such as aggregation behaviors—influence resource intake and foraging spatial distribution. We employed an individual-based model simulating wading bird foraging behaviors, with 900 individuals simultaneously foraging across a landscape with unknown resource distribution. Birds employed one of three patch-finding strategies: random, cue-searching, or hybrid, which uses both searching strategies. Each bird decided whether to remain in a patch based on a prey density threshold. We compared the daily resource intake and foraging distribution of birds across different modeled patch-finding strategies, resource distribution patterns, and the presence or absence of interference competition. Wading birds exhibiting aggregation behavior displayed increased intake rates when resources were concentrated and interference minimal. Aggregation behavior led to a closer match with the ideal free distribution when the prey density threshold was optimal. These findings provide theoretical support that aggregation behavior is effective in scenarios where resources are concentrated in a few patches, social cues are used by relatively few individuals, and interference competition is limited.</div></div>\",\"PeriodicalId\":51043,\"journal\":{\"name\":\"Ecological Modelling\",\"volume\":\"507 \",\"pages\":\"Article 111178\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Modelling\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304380025001632\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Modelling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304380025001632","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Foraging of wading birds on a patchy landscape: Simulating effects of social information, interference competition, and patch selection on prey intake and individual distribution
Foragers on patchy landscapes must acquire sufficient resources despite uncertainty in the location and amount of the resources. Optimal Foraging Theory posits that foragers deal with this uncertainty by using strategies that optimize resource intake within foraging periods. For species such as wading birds, this optimization is closely linked to their survival and reproductive success. Understanding the influence of patch selection on individual resource intake and foraging distribution is therefore crucial. In this study, we simulated how resource distribution, interference competition, and social cues—such as aggregation behaviors—influence resource intake and foraging spatial distribution. We employed an individual-based model simulating wading bird foraging behaviors, with 900 individuals simultaneously foraging across a landscape with unknown resource distribution. Birds employed one of three patch-finding strategies: random, cue-searching, or hybrid, which uses both searching strategies. Each bird decided whether to remain in a patch based on a prey density threshold. We compared the daily resource intake and foraging distribution of birds across different modeled patch-finding strategies, resource distribution patterns, and the presence or absence of interference competition. Wading birds exhibiting aggregation behavior displayed increased intake rates when resources were concentrated and interference minimal. Aggregation behavior led to a closer match with the ideal free distribution when the prey density threshold was optimal. These findings provide theoretical support that aggregation behavior is effective in scenarios where resources are concentrated in a few patches, social cues are used by relatively few individuals, and interference competition is limited.
期刊介绍:
The journal is concerned with the use of mathematical models and systems analysis for the description of ecological processes and for the sustainable management of resources. Human activity and well-being are dependent on and integrated with the functioning of ecosystems and the services they provide. We aim to understand these basic ecosystem functions using mathematical and conceptual modelling, systems analysis, thermodynamics, computer simulations, and ecological theory. This leads to a preference for process-based models embedded in theory with explicit causative agents as opposed to strictly statistical or correlative descriptions. These modelling methods can be applied to a wide spectrum of issues ranging from basic ecology to human ecology to socio-ecological systems. The journal welcomes research articles, short communications, review articles, letters to the editor, book reviews, and other communications. The journal also supports the activities of the [International Society of Ecological Modelling (ISEM)](http://www.isemna.org/).