有向图中每t个顶点恰好有λ个共同外邻点

IF 0.7 3区 数学 Q2 MATHEMATICS
Myungho Choi , Hojin Chu , Suh-Ryung Kim
{"title":"有向图中每t个顶点恰好有λ个共同外邻点","authors":"Myungho Choi ,&nbsp;Hojin Chu ,&nbsp;Suh-Ryung Kim","doi":"10.1016/j.disc.2025.114580","DOIUrl":null,"url":null,"abstract":"<div><div>We say that a digraph is a <span><math><mo>(</mo><mi>t</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span>-liking digraph if every <em>t</em> vertices have exactly <em>λ</em> common out-neighbors. In 1975, Plesník (1975) <span><span>[14]</span></span> proved that any <span><math><mo>(</mo><mi>t</mi><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-liking digraph is the complete digraph on <span><math><mi>t</mi><mo>+</mo><mn>1</mn></math></span> vertices for each <span><math><mi>t</mi><mo>≥</mo><mn>3</mn></math></span>. Choi et al. (2025) <span><span>[5]</span></span> showed that a <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-liking digraph is a fancy wheel digraph or a <em>k</em>-diregular digraph for some positive integer <em>k</em>. In this paper, we extend these results by completely characterizing the <span><math><mo>(</mo><mi>t</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span>-liking digraphs with <span><math><mi>t</mi><mo>≥</mo><mi>λ</mi><mo>+</mo><mn>2</mn></math></span> and giving some equivalent conditions for a <span><math><mo>(</mo><mi>t</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span>-liking digraph being a complete digraph on <span><math><mi>t</mi><mo>+</mo><mi>λ</mi></math></span> vertices.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 10","pages":"Article 114580"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digraphs in which every t vertices have exactly λ common out-neighbors\",\"authors\":\"Myungho Choi ,&nbsp;Hojin Chu ,&nbsp;Suh-Ryung Kim\",\"doi\":\"10.1016/j.disc.2025.114580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We say that a digraph is a <span><math><mo>(</mo><mi>t</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span>-liking digraph if every <em>t</em> vertices have exactly <em>λ</em> common out-neighbors. In 1975, Plesník (1975) <span><span>[14]</span></span> proved that any <span><math><mo>(</mo><mi>t</mi><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-liking digraph is the complete digraph on <span><math><mi>t</mi><mo>+</mo><mn>1</mn></math></span> vertices for each <span><math><mi>t</mi><mo>≥</mo><mn>3</mn></math></span>. Choi et al. (2025) <span><span>[5]</span></span> showed that a <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-liking digraph is a fancy wheel digraph or a <em>k</em>-diregular digraph for some positive integer <em>k</em>. In this paper, we extend these results by completely characterizing the <span><math><mo>(</mo><mi>t</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span>-liking digraphs with <span><math><mi>t</mi><mo>≥</mo><mi>λ</mi><mo>+</mo><mn>2</mn></math></span> and giving some equivalent conditions for a <span><math><mo>(</mo><mi>t</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span>-liking digraph being a complete digraph on <span><math><mi>t</mi><mo>+</mo><mi>λ</mi></math></span> vertices.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 10\",\"pages\":\"Article 114580\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25001888\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001888","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们说一个有向图是一个(t,λ)类有向图如果每t个顶点恰好有λ共同外邻点。1975年Plesník(1975)[14]证明了任意(t,1)类有向图都是t+1个顶点上的完全有向图,且t≥3。Choi et al.(2025)[5]证明了(2,1)- like有向图是花式轮有向图或对某正整数k的k-不规则有向图。本文通过完全刻画t≥λ+2的(t,λ)- like有向图,并给出了(t,λ)- like有向图是t+λ顶点上的完全有向图的一些等价条件,扩展了这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Digraphs in which every t vertices have exactly λ common out-neighbors
We say that a digraph is a (t,λ)-liking digraph if every t vertices have exactly λ common out-neighbors. In 1975, Plesník (1975) [14] proved that any (t,1)-liking digraph is the complete digraph on t+1 vertices for each t3. Choi et al. (2025) [5] showed that a (2,1)-liking digraph is a fancy wheel digraph or a k-diregular digraph for some positive integer k. In this paper, we extend these results by completely characterizing the (t,λ)-liking digraphs with tλ+2 and giving some equivalent conditions for a (t,λ)-liking digraph being a complete digraph on t+λ vertices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信