Sema Ertan Birsel , Ekrem Demirci , Ali Seker , Kadriye Yasemin Usta Ayanoğlu , Emir Oncu , Fatih Ciftci
{"title":"机器学习辅助分类儿童脑瘫患者髋关节状况使用移动百分比测量","authors":"Sema Ertan Birsel , Ekrem Demirci , Ali Seker , Kadriye Yasemin Usta Ayanoğlu , Emir Oncu , Fatih Ciftci","doi":"10.1016/j.bonr.2025.101852","DOIUrl":null,"url":null,"abstract":"<div><div>Hip displacement is a significant concern in children with cerebral palsy (CP), necessitating accurate and timely assessment to prevent long-term complications. This study developed a support vector machine (SVM) model to classify hip conditions using migration percentage (MP) measurements obtained from 176 hips across 88 anteroposterior pelvic radiographs. MP values were categorized into three groups: normal (MP ≤ 30 %), risky (30 % < MP ≤ 60 %), and dislocated (MP > 60 %). The SVM model was evaluated using stratified k-fold cross-validation, with accuracy, precision, recall, and F1-scores as key metrics. Its classifications were compared to manual evaluations performed by an orthopedic resident and a pediatric orthopedic surgeon. The model achieved an overall accuracy of 92.898 %, surpassing the consistency and reliability of manual assessments, particularly in identifying dislocated hips. Statistical analysis showed no significant differences between the model's MP measurements and those of the clinicians, validating its effectiveness. This study highlights the potential of SVM models to enhance diagnostic accuracy, reduce variability in evaluations, and support clinical decision-making. Future research should expand the dataset and incorporate advanced machine learning models to further improve diagnostic precision.</div></div>","PeriodicalId":9043,"journal":{"name":"Bone Reports","volume":"25 ","pages":"Article 101852"},"PeriodicalIF":2.1000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-assisted classification of hip conditions in pediatric cerebral palsy patients using migration percentage measurements\",\"authors\":\"Sema Ertan Birsel , Ekrem Demirci , Ali Seker , Kadriye Yasemin Usta Ayanoğlu , Emir Oncu , Fatih Ciftci\",\"doi\":\"10.1016/j.bonr.2025.101852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hip displacement is a significant concern in children with cerebral palsy (CP), necessitating accurate and timely assessment to prevent long-term complications. This study developed a support vector machine (SVM) model to classify hip conditions using migration percentage (MP) measurements obtained from 176 hips across 88 anteroposterior pelvic radiographs. MP values were categorized into three groups: normal (MP ≤ 30 %), risky (30 % < MP ≤ 60 %), and dislocated (MP > 60 %). The SVM model was evaluated using stratified k-fold cross-validation, with accuracy, precision, recall, and F1-scores as key metrics. Its classifications were compared to manual evaluations performed by an orthopedic resident and a pediatric orthopedic surgeon. The model achieved an overall accuracy of 92.898 %, surpassing the consistency and reliability of manual assessments, particularly in identifying dislocated hips. Statistical analysis showed no significant differences between the model's MP measurements and those of the clinicians, validating its effectiveness. This study highlights the potential of SVM models to enhance diagnostic accuracy, reduce variability in evaluations, and support clinical decision-making. Future research should expand the dataset and incorporate advanced machine learning models to further improve diagnostic precision.</div></div>\",\"PeriodicalId\":9043,\"journal\":{\"name\":\"Bone Reports\",\"volume\":\"25 \",\"pages\":\"Article 101852\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bone Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352187225000294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352187225000294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Machine learning-assisted classification of hip conditions in pediatric cerebral palsy patients using migration percentage measurements
Hip displacement is a significant concern in children with cerebral palsy (CP), necessitating accurate and timely assessment to prevent long-term complications. This study developed a support vector machine (SVM) model to classify hip conditions using migration percentage (MP) measurements obtained from 176 hips across 88 anteroposterior pelvic radiographs. MP values were categorized into three groups: normal (MP ≤ 30 %), risky (30 % < MP ≤ 60 %), and dislocated (MP > 60 %). The SVM model was evaluated using stratified k-fold cross-validation, with accuracy, precision, recall, and F1-scores as key metrics. Its classifications were compared to manual evaluations performed by an orthopedic resident and a pediatric orthopedic surgeon. The model achieved an overall accuracy of 92.898 %, surpassing the consistency and reliability of manual assessments, particularly in identifying dislocated hips. Statistical analysis showed no significant differences between the model's MP measurements and those of the clinicians, validating its effectiveness. This study highlights the potential of SVM models to enhance diagnostic accuracy, reduce variability in evaluations, and support clinical decision-making. Future research should expand the dataset and incorporate advanced machine learning models to further improve diagnostic precision.
Bone ReportsMedicine-Orthopedics and Sports Medicine
CiteScore
4.30
自引率
4.00%
发文量
444
审稿时长
57 days
期刊介绍:
Bone Reports is an interdisciplinary forum for the rapid publication of Original Research Articles and Case Reports across basic, translational and clinical aspects of bone and mineral metabolism. The journal publishes papers that are scientifically sound, with the peer review process focused principally on verifying sound methodologies, and correct data analysis and interpretation. We welcome studies either replicating or failing to replicate a previous study, and null findings. We fulfil a critical and current need to enhance research by publishing reproducibility studies and null findings.