通过面部照片进行甲状腺眼病深度学习驱动的突眼测量

IF 3.2 Q1 OPHTHALMOLOGY
Joonhyeon Park PhD , Jin Sook Yoon MD, PhD , Namju Kim MD, PhD , Kyubo Shin PhD , Hyun Young Park MD, PhD , Jongchan Kim MS , Jaemin Park MS , Jae Hoon Moon MD, PhD , JaeSang Ko MD, PhD
{"title":"通过面部照片进行甲状腺眼病深度学习驱动的突眼测量","authors":"Joonhyeon Park PhD ,&nbsp;Jin Sook Yoon MD, PhD ,&nbsp;Namju Kim MD, PhD ,&nbsp;Kyubo Shin PhD ,&nbsp;Hyun Young Park MD, PhD ,&nbsp;Jongchan Kim MS ,&nbsp;Jaemin Park MS ,&nbsp;Jae Hoon Moon MD, PhD ,&nbsp;JaeSang Ko MD, PhD","doi":"10.1016/j.xops.2025.100791","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>To develop and evaluate a deep learning (DL)-assisted system for proptosis measurement using facial photographs in thyroid eye disease (TED).</div></div><div><h3>Design</h3><div>A retrospective cohort study.</div></div><div><h3>Participants</h3><div>This study included 1108 patients with TED from Severance Hospital (SH) and 171 from Seoul National University Bundang Hospital (SNUBH).</div></div><div><h3>Methods</h3><div>The DL-assisted system was trained using 1610 facial images paired with Hertel exophthalmometry measurements from SH and externally validated using 511 SNUBH images. The system employs a dual-stream ResNet-18 neural network, utilizing both red-green-blue images and depth maps generated by the ZoeDepth algorithm.</div></div><div><h3>Main Outcome Measures</h3><div>Accuracy was assessed using mean absolute error (MAE), Pearson correlation coefficient, intraclass correlation coefficient (ICC), and area under the curve of the receiver operating characteristic curve.</div></div><div><h3>Results</h3><div>The DL-assisted system achieved an MAE of 1.27 mm for the SH dataset and 1.24 mm for the SNUBH dataset. Pearson correlation coefficients were 0.82 and 0.77, respectively, with ICCs indicating strong reliability (0.80 for SH and 0.73 for SNUBH). The receiver operating characteristic curve analysis showed area under the curves of 0.91 for SH and 0.88 for SNUBH in detecting proptosis. The system detected significant proptosis changes (≥ 2 mm) with 74.6% accuracy.</div></div><div><h3>Conclusions</h3><div>The DL-assisted system offers an accurate, accessible method for exophthalmometry in patients with TED using facial photographs. This tool presents a promising alternative to traditional exophthalmometry, potentially improving access to reliable proptosis measurement in both clinical and nonspecialist settings.</div></div><div><h3>Financial Disclosure(s)</h3><div>Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.</div></div>","PeriodicalId":74363,"journal":{"name":"Ophthalmology science","volume":"5 5","pages":"Article 100791"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning−Driven Exophthalmometry through Facial Photographs in Thyroid Eye Disease\",\"authors\":\"Joonhyeon Park PhD ,&nbsp;Jin Sook Yoon MD, PhD ,&nbsp;Namju Kim MD, PhD ,&nbsp;Kyubo Shin PhD ,&nbsp;Hyun Young Park MD, PhD ,&nbsp;Jongchan Kim MS ,&nbsp;Jaemin Park MS ,&nbsp;Jae Hoon Moon MD, PhD ,&nbsp;JaeSang Ko MD, PhD\",\"doi\":\"10.1016/j.xops.2025.100791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>To develop and evaluate a deep learning (DL)-assisted system for proptosis measurement using facial photographs in thyroid eye disease (TED).</div></div><div><h3>Design</h3><div>A retrospective cohort study.</div></div><div><h3>Participants</h3><div>This study included 1108 patients with TED from Severance Hospital (SH) and 171 from Seoul National University Bundang Hospital (SNUBH).</div></div><div><h3>Methods</h3><div>The DL-assisted system was trained using 1610 facial images paired with Hertel exophthalmometry measurements from SH and externally validated using 511 SNUBH images. The system employs a dual-stream ResNet-18 neural network, utilizing both red-green-blue images and depth maps generated by the ZoeDepth algorithm.</div></div><div><h3>Main Outcome Measures</h3><div>Accuracy was assessed using mean absolute error (MAE), Pearson correlation coefficient, intraclass correlation coefficient (ICC), and area under the curve of the receiver operating characteristic curve.</div></div><div><h3>Results</h3><div>The DL-assisted system achieved an MAE of 1.27 mm for the SH dataset and 1.24 mm for the SNUBH dataset. Pearson correlation coefficients were 0.82 and 0.77, respectively, with ICCs indicating strong reliability (0.80 for SH and 0.73 for SNUBH). The receiver operating characteristic curve analysis showed area under the curves of 0.91 for SH and 0.88 for SNUBH in detecting proptosis. The system detected significant proptosis changes (≥ 2 mm) with 74.6% accuracy.</div></div><div><h3>Conclusions</h3><div>The DL-assisted system offers an accurate, accessible method for exophthalmometry in patients with TED using facial photographs. This tool presents a promising alternative to traditional exophthalmometry, potentially improving access to reliable proptosis measurement in both clinical and nonspecialist settings.</div></div><div><h3>Financial Disclosure(s)</h3><div>Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.</div></div>\",\"PeriodicalId\":74363,\"journal\":{\"name\":\"Ophthalmology science\",\"volume\":\"5 5\",\"pages\":\"Article 100791\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ophthalmology science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666914525000892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ophthalmology science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666914525000892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的开发并评价一种深度学习(DL)辅助的甲状腺眼病(TED)患者面部照片投影测量系统。设计:回顾性队列研究。参与者:本研究包括来自Severance医院(SH)的1108例TED患者和来自首尔国立大学盆唐医院(SNUBH)的171例。方法采用1610张人脸图像与SH的Hertel外眼测量数据配对对dl辅助系统进行训练,并使用511张SNUBH图像进行外部验证。该系统采用双流ResNet-18神经网络,利用红绿蓝图像和ZoeDepth算法生成的深度图。主要观察指标采用平均绝对误差(MAE)、Pearson相关系数、类内相关系数(ICC)和受试者工作特征曲线下面积评估准确性。结果dl辅助系统对SH数据集和SNUBH数据集的MAE分别达到1.27 mm和1.24 mm。Pearson相关系数分别为0.82和0.77,ICCs显示较强的信度(SH为0.80,SNUBH为0.73)。受试者工作特征曲线分析显示,SH曲线下面积为0.91,SNUBH曲线下面积为0.88。该系统检测到显著的预后变化(≥2mm),准确率为74.6%。结论dl辅助系统为TED患者提供了一种准确、方便的使用面部照片进行突眼测量的方法。该工具为传统的突眼测量提供了一个有希望的替代方案,有可能在临床和非专业环境中改善可靠的眼球突出测量。财务披露专有或商业披露可在本文末尾的脚注和披露中找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning−Driven Exophthalmometry through Facial Photographs in Thyroid Eye Disease

Objective

To develop and evaluate a deep learning (DL)-assisted system for proptosis measurement using facial photographs in thyroid eye disease (TED).

Design

A retrospective cohort study.

Participants

This study included 1108 patients with TED from Severance Hospital (SH) and 171 from Seoul National University Bundang Hospital (SNUBH).

Methods

The DL-assisted system was trained using 1610 facial images paired with Hertel exophthalmometry measurements from SH and externally validated using 511 SNUBH images. The system employs a dual-stream ResNet-18 neural network, utilizing both red-green-blue images and depth maps generated by the ZoeDepth algorithm.

Main Outcome Measures

Accuracy was assessed using mean absolute error (MAE), Pearson correlation coefficient, intraclass correlation coefficient (ICC), and area under the curve of the receiver operating characteristic curve.

Results

The DL-assisted system achieved an MAE of 1.27 mm for the SH dataset and 1.24 mm for the SNUBH dataset. Pearson correlation coefficients were 0.82 and 0.77, respectively, with ICCs indicating strong reliability (0.80 for SH and 0.73 for SNUBH). The receiver operating characteristic curve analysis showed area under the curves of 0.91 for SH and 0.88 for SNUBH in detecting proptosis. The system detected significant proptosis changes (≥ 2 mm) with 74.6% accuracy.

Conclusions

The DL-assisted system offers an accurate, accessible method for exophthalmometry in patients with TED using facial photographs. This tool presents a promising alternative to traditional exophthalmometry, potentially improving access to reliable proptosis measurement in both clinical and nonspecialist settings.

Financial Disclosure(s)

Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ophthalmology science
Ophthalmology science Ophthalmology
CiteScore
3.40
自引率
0.00%
发文量
0
审稿时长
89 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信