ZHANG Wanggang , HUANG Lei , WANG Menghu , WANG Jian , WEI Aili , LIU Yiming
{"title":"提高平面微型超级电容器能量密度:低层石墨/炭黑/NiCo2O4复合材料的作用","authors":"ZHANG Wanggang , HUANG Lei , WANG Menghu , WANG Jian , WEI Aili , LIU Yiming","doi":"10.1016/S1872-5813(24)60511-6","DOIUrl":null,"url":null,"abstract":"<div><div>The advancement of planar micro-supercapacitors (PMSCs) for micro-electromechanical systems (MEMS) has been significantly hindered by the challenge of achieving high energy and power densities. This study addresses this issue by leveraging screen-printing technology to fabricate high-performance PMSCs using innovative composite ink. The ink, a synergistic blend of few-layer graphene (Gt), carbon black (CB), and NiCo<sub>2</sub>O<sub>4</sub>, was meticulously mixed to form a conductive and robust coating that enhanced the capacitive performance of the PMSCs. The optimized ink formulation and printing process result in a micro-supercapacitor with an exceptional areal capacitance of 18.95 mF/cm<sup>2</sup> and an areal energy density of 2.63 µW·h/cm<sup>2</sup> at a current density of 0.05 mA/cm<sup>2</sup>, along with an areal power density of 0.025 mW/cm<sup>2</sup>. The devices demonstrated impressive durability with a capacitance retention rate of 94.7% after a stringent 20000-cycle test, demonstrating their potential for long-term applications. Moreover, the PMSCs displayed excellent mechanical flexibility, with a capacitance decrease of only 3.43% after 5000 bending cycles, highlighting their suitability for flexible electronic devices. The ease of integrating these PMSCs into series and parallel configurations for customized power further underscores their practicality for integrated power supply solutions in various technologies.</div></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"53 5","pages":"Pages 646-662"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing energy density in planar micro-supercapacitors: The role of few-layer graphite/carbon black/NiCo2O4 composite materials\",\"authors\":\"ZHANG Wanggang , HUANG Lei , WANG Menghu , WANG Jian , WEI Aili , LIU Yiming\",\"doi\":\"10.1016/S1872-5813(24)60511-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The advancement of planar micro-supercapacitors (PMSCs) for micro-electromechanical systems (MEMS) has been significantly hindered by the challenge of achieving high energy and power densities. This study addresses this issue by leveraging screen-printing technology to fabricate high-performance PMSCs using innovative composite ink. The ink, a synergistic blend of few-layer graphene (Gt), carbon black (CB), and NiCo<sub>2</sub>O<sub>4</sub>, was meticulously mixed to form a conductive and robust coating that enhanced the capacitive performance of the PMSCs. The optimized ink formulation and printing process result in a micro-supercapacitor with an exceptional areal capacitance of 18.95 mF/cm<sup>2</sup> and an areal energy density of 2.63 µW·h/cm<sup>2</sup> at a current density of 0.05 mA/cm<sup>2</sup>, along with an areal power density of 0.025 mW/cm<sup>2</sup>. The devices demonstrated impressive durability with a capacitance retention rate of 94.7% after a stringent 20000-cycle test, demonstrating their potential for long-term applications. Moreover, the PMSCs displayed excellent mechanical flexibility, with a capacitance decrease of only 3.43% after 5000 bending cycles, highlighting their suitability for flexible electronic devices. The ease of integrating these PMSCs into series and parallel configurations for customized power further underscores their practicality for integrated power supply solutions in various technologies.</div></div>\",\"PeriodicalId\":15956,\"journal\":{\"name\":\"燃料化学学报\",\"volume\":\"53 5\",\"pages\":\"Pages 646-662\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"燃料化学学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872581324605116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581324605116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
Enhancing energy density in planar micro-supercapacitors: The role of few-layer graphite/carbon black/NiCo2O4 composite materials
The advancement of planar micro-supercapacitors (PMSCs) for micro-electromechanical systems (MEMS) has been significantly hindered by the challenge of achieving high energy and power densities. This study addresses this issue by leveraging screen-printing technology to fabricate high-performance PMSCs using innovative composite ink. The ink, a synergistic blend of few-layer graphene (Gt), carbon black (CB), and NiCo2O4, was meticulously mixed to form a conductive and robust coating that enhanced the capacitive performance of the PMSCs. The optimized ink formulation and printing process result in a micro-supercapacitor with an exceptional areal capacitance of 18.95 mF/cm2 and an areal energy density of 2.63 µW·h/cm2 at a current density of 0.05 mA/cm2, along with an areal power density of 0.025 mW/cm2. The devices demonstrated impressive durability with a capacitance retention rate of 94.7% after a stringent 20000-cycle test, demonstrating their potential for long-term applications. Moreover, the PMSCs displayed excellent mechanical flexibility, with a capacitance decrease of only 3.43% after 5000 bending cycles, highlighting their suitability for flexible electronic devices. The ease of integrating these PMSCs into series and parallel configurations for customized power further underscores their practicality for integrated power supply solutions in various technologies.
期刊介绍:
Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.