合理设计富氧空位自支撑NiCo(OH)2电极,实现生物质高效升级

IF 13.1 1区 化学 Q1 Energy
Diexin Xie , Jiabin Chen , Jingxin Hou , Fangfang Yang , Runping Feng , Changsheng Cao , Zailai Xie
{"title":"合理设计富氧空位自支撑NiCo(OH)2电极,实现生物质高效升级","authors":"Diexin Xie ,&nbsp;Jiabin Chen ,&nbsp;Jingxin Hou ,&nbsp;Fangfang Yang ,&nbsp;Runping Feng ,&nbsp;Changsheng Cao ,&nbsp;Zailai Xie","doi":"10.1016/j.jechem.2025.04.050","DOIUrl":null,"url":null,"abstract":"<div><div>Transition metal-based electrocatalysts are a promising alternative to noble metal catalysts for electrochemical upgrading of biomass-derived 5-hydroxymethylfurfural (HMF) into high-value 2,5-furandicarboxylic acid (FDCA). However, the rational design of efficient electrocatalysts with precisely tailored structure–activity correlations remains a critical challenge. Herein, we report a hierarchically structured self-supporting electrode (Vo-NiCo(OH)<sub>2</sub>-NF) synthesized through in situ electrochemical reconstruction of NiCo-Prussian blue analogue (NiCo-PBA) precursor, in which oxygen vacancy (Vo)-rich Co-doped Ni(OH)<sub>2</sub> nanosheet arrays are vertically aligned on nickel foam (NF), creating an interconnected conductive network. When evaluated for the HMF oxidation reaction (HMFOR), Vo-NiCo(OH)<sub>2</sub>-NF exhibits exceptional electrochemical performance, achieving near-complete HMF conversion (99%), ultrahigh FDCA Faradaic efficiency (97.5%), and remarkable product yield (96.2%) at 1.45 V, outperforming conventional Co-doped Ni(OH)<sub>2</sub> (NiCo(OH)<sub>2</sub>-NF) and pristine Ni(OH)<sub>2</sub> (Ni(OH)<sub>2</sub>-NF) electrodes. By combining in situ spectroscopic characterization and theoretical calculations, we elucidate that the synergistic effects of Co-doping and oxygen vacancy engineering effectively modulate the electronic structure of Ni active centers, favor the formation of high-valent Ni<sup>3+</sup> species, and optimize HMF adsorption, thereby improving the HMFOR performance. This work provides valuable mechanistic insights for catalyst design and may inspire the development of advanced transition metal-based electrodes for efficient biomass conversion systems.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"108 ","pages":"Pages 558-566"},"PeriodicalIF":13.1000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational design of oxygen vacancy-rich self-supporting NiCo(OH)2 electrode for efficient biomass upgrading\",\"authors\":\"Diexin Xie ,&nbsp;Jiabin Chen ,&nbsp;Jingxin Hou ,&nbsp;Fangfang Yang ,&nbsp;Runping Feng ,&nbsp;Changsheng Cao ,&nbsp;Zailai Xie\",\"doi\":\"10.1016/j.jechem.2025.04.050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Transition metal-based electrocatalysts are a promising alternative to noble metal catalysts for electrochemical upgrading of biomass-derived 5-hydroxymethylfurfural (HMF) into high-value 2,5-furandicarboxylic acid (FDCA). However, the rational design of efficient electrocatalysts with precisely tailored structure–activity correlations remains a critical challenge. Herein, we report a hierarchically structured self-supporting electrode (Vo-NiCo(OH)<sub>2</sub>-NF) synthesized through in situ electrochemical reconstruction of NiCo-Prussian blue analogue (NiCo-PBA) precursor, in which oxygen vacancy (Vo)-rich Co-doped Ni(OH)<sub>2</sub> nanosheet arrays are vertically aligned on nickel foam (NF), creating an interconnected conductive network. When evaluated for the HMF oxidation reaction (HMFOR), Vo-NiCo(OH)<sub>2</sub>-NF exhibits exceptional electrochemical performance, achieving near-complete HMF conversion (99%), ultrahigh FDCA Faradaic efficiency (97.5%), and remarkable product yield (96.2%) at 1.45 V, outperforming conventional Co-doped Ni(OH)<sub>2</sub> (NiCo(OH)<sub>2</sub>-NF) and pristine Ni(OH)<sub>2</sub> (Ni(OH)<sub>2</sub>-NF) electrodes. By combining in situ spectroscopic characterization and theoretical calculations, we elucidate that the synergistic effects of Co-doping and oxygen vacancy engineering effectively modulate the electronic structure of Ni active centers, favor the formation of high-valent Ni<sup>3+</sup> species, and optimize HMF adsorption, thereby improving the HMFOR performance. This work provides valuable mechanistic insights for catalyst design and may inspire the development of advanced transition metal-based electrodes for efficient biomass conversion systems.</div></div>\",\"PeriodicalId\":15728,\"journal\":{\"name\":\"Journal of Energy Chemistry\",\"volume\":\"108 \",\"pages\":\"Pages 558-566\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495625003651\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495625003651","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

过渡金属基电催化剂是一种很有前途的替代贵金属催化剂,可用于生物质衍生的5-羟甲基糠醛(HMF)电化学转化为高价值的2,5-呋喃二羧酸(FDCA)。然而,合理设计具有精确定制结构-活性相关性的高效电催化剂仍然是一个关键挑战。本文报道了一种分层结构的自支撑电极(Vo- nico (OH)2-NF),通过原位电化学重建NiCo-Prussian blue类似物(NiCo-PBA)前驱体,其中富氧空位(Vo)共掺杂Ni(OH)2纳米片阵列垂直排列在泡沫镍(NF)上,形成一个相互连接的导电网络。当对HMF氧化反应(HMFOR)进行评估时,Vo-NiCo(OH)2- nf表现出优异的电化学性能,在1.45 V下实现了几乎完全的HMF转化(99%),超高的FDCA法拉第效率(97.5%)和显著的产物收率(96.2%),优于传统的共掺杂Ni(OH)2 (NiCo(OH)2- nf)和原始Ni(OH)2 (Ni(OH)2- nf)电极。通过原位光谱表征和理论计算相结合,我们阐明了共掺杂和氧空位工程的协同效应有效调节了Ni活性中心的电子结构,有利于高价Ni3+的形成,优化了HMF的吸附,从而提高了HMFOR的性能。这项工作为催化剂设计提供了有价值的机理见解,并可能启发用于高效生物质转化系统的先进过渡金属基电极的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rational design of oxygen vacancy-rich self-supporting NiCo(OH)2 electrode for efficient biomass upgrading
Transition metal-based electrocatalysts are a promising alternative to noble metal catalysts for electrochemical upgrading of biomass-derived 5-hydroxymethylfurfural (HMF) into high-value 2,5-furandicarboxylic acid (FDCA). However, the rational design of efficient electrocatalysts with precisely tailored structure–activity correlations remains a critical challenge. Herein, we report a hierarchically structured self-supporting electrode (Vo-NiCo(OH)2-NF) synthesized through in situ electrochemical reconstruction of NiCo-Prussian blue analogue (NiCo-PBA) precursor, in which oxygen vacancy (Vo)-rich Co-doped Ni(OH)2 nanosheet arrays are vertically aligned on nickel foam (NF), creating an interconnected conductive network. When evaluated for the HMF oxidation reaction (HMFOR), Vo-NiCo(OH)2-NF exhibits exceptional electrochemical performance, achieving near-complete HMF conversion (99%), ultrahigh FDCA Faradaic efficiency (97.5%), and remarkable product yield (96.2%) at 1.45 V, outperforming conventional Co-doped Ni(OH)2 (NiCo(OH)2-NF) and pristine Ni(OH)2 (Ni(OH)2-NF) electrodes. By combining in situ spectroscopic characterization and theoretical calculations, we elucidate that the synergistic effects of Co-doping and oxygen vacancy engineering effectively modulate the electronic structure of Ni active centers, favor the formation of high-valent Ni3+ species, and optimize HMF adsorption, thereby improving the HMFOR performance. This work provides valuable mechanistic insights for catalyst design and may inspire the development of advanced transition metal-based electrodes for efficient biomass conversion systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信