{"title":"自一致波波夫近似下均匀弱相互作用玻色气体的转变温度和热力学性质","authors":"Nguyen Van Thu, Pham Duy Thanh, Lo Thi Thuy","doi":"10.1016/j.physb.2025.417356","DOIUrl":null,"url":null,"abstract":"<div><div>This study utilizes the Cornwall–Jackiw–Tomboulis effective action approach combined with variational perturbation theory to investigate the relative shift in the transition temperature of a homogeneous, repulsive, weakly interacting Bose gas compared to that of an ideal Bose gas. By applying both the one-loop and self-consistent Popov approximations, the universal form of the relative shift in the transition temperature is derived, demonstrating its proportionality to the <span><math><mi>s</mi></math></span>-wave scattering length. The results exhibit excellent agreement with those obtained from precise Monte Carlo simulations. Furthermore, the zero-point energy and various thermodynamic properties are examined in both the condensed and normal phases. A comparison with experimental data reveals an excellent agreement, further validating the findings.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"713 ","pages":"Article 417356"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transition temperature and thermodynamic properties of homogeneous weakly interacting Bose gas in self-consistent Popov approximation\",\"authors\":\"Nguyen Van Thu, Pham Duy Thanh, Lo Thi Thuy\",\"doi\":\"10.1016/j.physb.2025.417356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study utilizes the Cornwall–Jackiw–Tomboulis effective action approach combined with variational perturbation theory to investigate the relative shift in the transition temperature of a homogeneous, repulsive, weakly interacting Bose gas compared to that of an ideal Bose gas. By applying both the one-loop and self-consistent Popov approximations, the universal form of the relative shift in the transition temperature is derived, demonstrating its proportionality to the <span><math><mi>s</mi></math></span>-wave scattering length. The results exhibit excellent agreement with those obtained from precise Monte Carlo simulations. Furthermore, the zero-point energy and various thermodynamic properties are examined in both the condensed and normal phases. A comparison with experimental data reveals an excellent agreement, further validating the findings.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"713 \",\"pages\":\"Article 417356\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452625004739\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625004739","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Transition temperature and thermodynamic properties of homogeneous weakly interacting Bose gas in self-consistent Popov approximation
This study utilizes the Cornwall–Jackiw–Tomboulis effective action approach combined with variational perturbation theory to investigate the relative shift in the transition temperature of a homogeneous, repulsive, weakly interacting Bose gas compared to that of an ideal Bose gas. By applying both the one-loop and self-consistent Popov approximations, the universal form of the relative shift in the transition temperature is derived, demonstrating its proportionality to the -wave scattering length. The results exhibit excellent agreement with those obtained from precise Monte Carlo simulations. Furthermore, the zero-point energy and various thermodynamic properties are examined in both the condensed and normal phases. A comparison with experimental data reveals an excellent agreement, further validating the findings.
期刊介绍:
Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work.
Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas:
-Magnetism
-Materials physics
-Nanostructures and nanomaterials
-Optics and optical materials
-Quantum materials
-Semiconductors
-Strongly correlated systems
-Superconductivity
-Surfaces and interfaces