西格尔-巴格曼空间上的模获取复合算子

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
Neeru Bala , Sudip Ranjan Bhuia
{"title":"西格尔-巴格曼空间上的模获取复合算子","authors":"Neeru Bala ,&nbsp;Sudip Ranjan Bhuia","doi":"10.1016/j.bulsci.2025.103657","DOIUrl":null,"url":null,"abstract":"<div><div>In this note, we study the composition operators on Segal-Bargmann spaces, which attains its norm and we show that every bounded composition operators on the classical Fock space over <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is norm attaining. Also, we find a necessary condition for a sum of two kernel functions to be an extremal function for the norm of composition operators.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"203 ","pages":"Article 103657"},"PeriodicalIF":1.3000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Norm attaining composition operators on Segal-Bargmann spaces\",\"authors\":\"Neeru Bala ,&nbsp;Sudip Ranjan Bhuia\",\"doi\":\"10.1016/j.bulsci.2025.103657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this note, we study the composition operators on Segal-Bargmann spaces, which attains its norm and we show that every bounded composition operators on the classical Fock space over <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is norm attaining. Also, we find a necessary condition for a sum of two kernel functions to be an extremal function for the norm of composition operators.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"203 \",\"pages\":\"Article 103657\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449725000831\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725000831","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了sgal - bargmann空间上的复合算子,得到了它的范数,并证明了Cn上经典Fock空间上的每一个有界复合算子都能得到范数。此外,我们还发现了两个核函数的和是复合算子范数的极值函数的一个必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Norm attaining composition operators on Segal-Bargmann spaces
In this note, we study the composition operators on Segal-Bargmann spaces, which attains its norm and we show that every bounded composition operators on the classical Fock space over Cn is norm attaining. Also, we find a necessary condition for a sum of two kernel functions to be an extremal function for the norm of composition operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信