频谱预测:利用POMDP增强crn中的D2D通信

IF 2 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Anal Paul , Subhranginee Das , Santi P. Maity
{"title":"频谱预测:利用POMDP增强crn中的D2D通信","authors":"Anal Paul ,&nbsp;Subhranginee Das ,&nbsp;Santi P. Maity","doi":"10.1016/j.phycom.2025.102704","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a novel spectrum prediction (SP) framework that leverages a Partial Observable Markov Decision Process (POMDP) and reinforcement learning (RL) to enhance energy efficiency (EE) in Cognitive Radio (CR) -based Device-to-Device (D2D) communications. Unlike conventional spectrum sensing (SS), which is both energy- and time-consuming, our approach predicts the state of primary user (PU) channels and adopts a hybrid transmission strategy that seamlessly integrates interweave, underlay, and overlay modes. A policy iteration-based RL algorithm enables secondary users (SUs) to dynamically update their transmission strategies based on historical observations and belief states. Furthermore, a dedicated reward function maximizes throughput while minimizing energy consumption under stringent constraints such as data rate, interference thresholds, and PU cooperation requirements. Simulation results demonstrate that our approach outperforms existing ML/RL-based works in EE optimization by <span><math><mrow><mo>∼</mo><mn>15</mn><mo>.</mo><mn>40</mn><mtext>%</mtext></mrow></math></span> and <span><math><mrow><mo>∼</mo><mn>34</mn><mo>.</mo><mn>86</mn><mtext>%</mtext></mrow></math></span>, respectively.</div></div>","PeriodicalId":48707,"journal":{"name":"Physical Communication","volume":"71 ","pages":"Article 102704"},"PeriodicalIF":2.0000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectrum prediction: Boosting D2D communications in CRNs using POMDP\",\"authors\":\"Anal Paul ,&nbsp;Subhranginee Das ,&nbsp;Santi P. Maity\",\"doi\":\"10.1016/j.phycom.2025.102704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose a novel spectrum prediction (SP) framework that leverages a Partial Observable Markov Decision Process (POMDP) and reinforcement learning (RL) to enhance energy efficiency (EE) in Cognitive Radio (CR) -based Device-to-Device (D2D) communications. Unlike conventional spectrum sensing (SS), which is both energy- and time-consuming, our approach predicts the state of primary user (PU) channels and adopts a hybrid transmission strategy that seamlessly integrates interweave, underlay, and overlay modes. A policy iteration-based RL algorithm enables secondary users (SUs) to dynamically update their transmission strategies based on historical observations and belief states. Furthermore, a dedicated reward function maximizes throughput while minimizing energy consumption under stringent constraints such as data rate, interference thresholds, and PU cooperation requirements. Simulation results demonstrate that our approach outperforms existing ML/RL-based works in EE optimization by <span><math><mrow><mo>∼</mo><mn>15</mn><mo>.</mo><mn>40</mn><mtext>%</mtext></mrow></math></span> and <span><math><mrow><mo>∼</mo><mn>34</mn><mo>.</mo><mn>86</mn><mtext>%</mtext></mrow></math></span>, respectively.</div></div>\",\"PeriodicalId\":48707,\"journal\":{\"name\":\"Physical Communication\",\"volume\":\"71 \",\"pages\":\"Article 102704\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Communication\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874490725001077\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874490725001077","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的频谱预测(SP)框架,该框架利用部分可观察马尔可夫决策过程(POMDP)和强化学习(RL)来提高基于认知无线电(CR)的设备对设备(D2D)通信的能源效率(EE)。与传统的频谱感知(SS)不同,这既耗能又耗时,我们的方法预测主用户(PU)信道的状态,并采用无缝集成交织、底层和覆盖模式的混合传输策略。基于策略迭代的RL算法使辅助用户能够根据历史观察和信念状态动态更新其传输策略。此外,在数据速率、干扰阈值和PU合作要求等严格约束下,专用奖励功能最大限度地提高了吞吐量,同时最大限度地降低了能耗。仿真结果表明,我们的方法在EE优化方面分别优于现有的基于ML/ rl的工作,分别提高了~ 15.40%和~ 34.86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectrum prediction: Boosting D2D communications in CRNs using POMDP
We propose a novel spectrum prediction (SP) framework that leverages a Partial Observable Markov Decision Process (POMDP) and reinforcement learning (RL) to enhance energy efficiency (EE) in Cognitive Radio (CR) -based Device-to-Device (D2D) communications. Unlike conventional spectrum sensing (SS), which is both energy- and time-consuming, our approach predicts the state of primary user (PU) channels and adopts a hybrid transmission strategy that seamlessly integrates interweave, underlay, and overlay modes. A policy iteration-based RL algorithm enables secondary users (SUs) to dynamically update their transmission strategies based on historical observations and belief states. Furthermore, a dedicated reward function maximizes throughput while minimizing energy consumption under stringent constraints such as data rate, interference thresholds, and PU cooperation requirements. Simulation results demonstrate that our approach outperforms existing ML/RL-based works in EE optimization by 15.40% and 34.86%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Communication
Physical Communication ENGINEERING, ELECTRICAL & ELECTRONICTELECO-TELECOMMUNICATIONS
CiteScore
5.00
自引率
9.10%
发文量
212
审稿时长
55 days
期刊介绍: PHYCOM: Physical Communication is an international and archival journal providing complete coverage of all topics of interest to those involved in all aspects of physical layer communications. Theoretical research contributions presenting new techniques, concepts or analyses, applied contributions reporting on experiences and experiments, and tutorials are published. Topics of interest include but are not limited to: Physical layer issues of Wireless Local Area Networks, WiMAX, Wireless Mesh Networks, Sensor and Ad Hoc Networks, PCS Systems; Radio access protocols and algorithms for the physical layer; Spread Spectrum Communications; Channel Modeling; Detection and Estimation; Modulation and Coding; Multiplexing and Carrier Techniques; Broadband Wireless Communications; Wireless Personal Communications; Multi-user Detection; Signal Separation and Interference rejection: Multimedia Communications over Wireless; DSP Applications to Wireless Systems; Experimental and Prototype Results; Multiple Access Techniques; Space-time Processing; Synchronization Techniques; Error Control Techniques; Cryptography; Software Radios; Tracking; Resource Allocation and Inference Management; Multi-rate and Multi-carrier Communications; Cross layer Design and Optimization; Propagation and Channel Characterization; OFDM Systems; MIMO Systems; Ultra-Wideband Communications; Cognitive Radio System Architectures; Platforms and Hardware Implementations for the Support of Cognitive, Radio Systems; Cognitive Radio Resource Management and Dynamic Spectrum Sharing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信