Majd Machour , Roy Meretzki , Yuval Moshe Haizler , Margarita Shuhmaher , Dina Safina , Mark M. Levy , Shulamit Levenberg
{"title":"一种用于血管化骨组织混合生物打印的刚性生物墨水,具有增强的机械性能","authors":"Majd Machour , Roy Meretzki , Yuval Moshe Haizler , Margarita Shuhmaher , Dina Safina , Mark M. Levy , Shulamit Levenberg","doi":"10.1016/j.biomaterials.2025.123406","DOIUrl":null,"url":null,"abstract":"<div><div>3D bioprinting is an emerging technique in tissue engineering that is advantageous for fabricating intricate tissues. However, challenges arise in bioprinting functional, implantable tissues. Commonly utilized hydrogel bioinks, while offering desirable printability and a cell-friendly environment, often lack the mechanical robustness necessary for post-printing maturation, handling, and implantation. These limitations are particularly relevant for bone tissue. Treatment of bone loss resulting from trauma or infection poses a significant clinical challenge. While surgical interventions exist, they frequently lead to complications and limited outcomes. Thus, a strategy to enhance the mechanical integrity of bioprinted constructs compatible with cells is needed. This study presents a novel hybrid bioprinting approach to create mechanically robust, vascularized bone tissue. A reinforcing bioink composed of a poly(lactic-co-glycolic) acid (PLGA), hydroxyapatite (HA), and polyethylene-glycol microparticles blend, which is thermosensitive due to a reduced glass transition temperature (∼36 °C), enabling sintering at physiological conditions is co-printed with a cell-laden, ECM-based hydrogel. The microparticles sinter at 37 °C, forming a porous, stiff scaffold. The hybrid bioprinted constructs demonstrate high cell viability, vascular network formation, and osteogenic differentiation. In vivo implantation in a rat femoral defect reveals superior bone regeneration compared to acellular controls. This study highlights the potential of hybrid bioprinting for creating tissues exhibiting high cell viability and enhanced mechanical properties, allowing for their handling and implantation.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"322 ","pages":"Article 123406"},"PeriodicalIF":12.8000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A stiff bioink for hybrid bioprinting of vascularized bone tissue with enhanced mechanical properties\",\"authors\":\"Majd Machour , Roy Meretzki , Yuval Moshe Haizler , Margarita Shuhmaher , Dina Safina , Mark M. Levy , Shulamit Levenberg\",\"doi\":\"10.1016/j.biomaterials.2025.123406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>3D bioprinting is an emerging technique in tissue engineering that is advantageous for fabricating intricate tissues. However, challenges arise in bioprinting functional, implantable tissues. Commonly utilized hydrogel bioinks, while offering desirable printability and a cell-friendly environment, often lack the mechanical robustness necessary for post-printing maturation, handling, and implantation. These limitations are particularly relevant for bone tissue. Treatment of bone loss resulting from trauma or infection poses a significant clinical challenge. While surgical interventions exist, they frequently lead to complications and limited outcomes. Thus, a strategy to enhance the mechanical integrity of bioprinted constructs compatible with cells is needed. This study presents a novel hybrid bioprinting approach to create mechanically robust, vascularized bone tissue. A reinforcing bioink composed of a poly(lactic-co-glycolic) acid (PLGA), hydroxyapatite (HA), and polyethylene-glycol microparticles blend, which is thermosensitive due to a reduced glass transition temperature (∼36 °C), enabling sintering at physiological conditions is co-printed with a cell-laden, ECM-based hydrogel. The microparticles sinter at 37 °C, forming a porous, stiff scaffold. The hybrid bioprinted constructs demonstrate high cell viability, vascular network formation, and osteogenic differentiation. In vivo implantation in a rat femoral defect reveals superior bone regeneration compared to acellular controls. This study highlights the potential of hybrid bioprinting for creating tissues exhibiting high cell viability and enhanced mechanical properties, allowing for their handling and implantation.</div></div>\",\"PeriodicalId\":254,\"journal\":{\"name\":\"Biomaterials\",\"volume\":\"322 \",\"pages\":\"Article 123406\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142961225003254\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225003254","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A stiff bioink for hybrid bioprinting of vascularized bone tissue with enhanced mechanical properties
3D bioprinting is an emerging technique in tissue engineering that is advantageous for fabricating intricate tissues. However, challenges arise in bioprinting functional, implantable tissues. Commonly utilized hydrogel bioinks, while offering desirable printability and a cell-friendly environment, often lack the mechanical robustness necessary for post-printing maturation, handling, and implantation. These limitations are particularly relevant for bone tissue. Treatment of bone loss resulting from trauma or infection poses a significant clinical challenge. While surgical interventions exist, they frequently lead to complications and limited outcomes. Thus, a strategy to enhance the mechanical integrity of bioprinted constructs compatible with cells is needed. This study presents a novel hybrid bioprinting approach to create mechanically robust, vascularized bone tissue. A reinforcing bioink composed of a poly(lactic-co-glycolic) acid (PLGA), hydroxyapatite (HA), and polyethylene-glycol microparticles blend, which is thermosensitive due to a reduced glass transition temperature (∼36 °C), enabling sintering at physiological conditions is co-printed with a cell-laden, ECM-based hydrogel. The microparticles sinter at 37 °C, forming a porous, stiff scaffold. The hybrid bioprinted constructs demonstrate high cell viability, vascular network formation, and osteogenic differentiation. In vivo implantation in a rat femoral defect reveals superior bone regeneration compared to acellular controls. This study highlights the potential of hybrid bioprinting for creating tissues exhibiting high cell viability and enhanced mechanical properties, allowing for their handling and implantation.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.