警察和骑自行车攻击劫匪

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Alexander Clow , Melissa A. Huggan , M.E. Messinger
{"title":"警察和骑自行车攻击劫匪","authors":"Alexander Clow ,&nbsp;Melissa A. Huggan ,&nbsp;M.E. Messinger","doi":"10.1016/j.dam.2025.05.019","DOIUrl":null,"url":null,"abstract":"<div><div>This paper considers the Cops and Attacking Robbers game, a variant of Cops and Robbers, where the robber is empowered to attack a cop in the same way a cop can capture the robber. In a graph <span><math><mi>G</mi></math></span>, the number of cops required to capture a robber in the Cops and Attacking Robbers game is denoted by <span><math><mrow><mo>cc</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. We give a sufficient condition for a triangle-free graph to have attacking cop number at most 2 and we characterise when outerplanar graphs have attacking cop number 2. We also prove that all bipartite planar graphs <span><math><mi>G</mi></math></span> have <span><math><mrow><mo>cc</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>4</mn></mrow></math></span> and show this is tight by constructing a bipartite planar graph <span><math><mi>G</mi></math></span> with <span><math><mrow><mo>cc</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>4</mn></mrow></math></span>. Finally we construct 17 non-isomorphic graphs <span><math><mi>H</mi></math></span> of order 58 with <span><math><mrow><mo>cc</mo><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>=</mo><mn>6</mn></mrow></math></span> and <span><math><mrow><mo>c</mo><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>=</mo><mn>3</mn></mrow></math></span>. This provides the first example of a graph <span><math><mi>H</mi></math></span> with <span><math><mrow><mo>cc</mo><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>−</mo><mo>c</mo><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>≥</mo><mn>3</mn></mrow></math></span>, extending work by Bonato et al. (2014). We conclude with a list of conjectures and open problems.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"373 ","pages":"Pages 327-342"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cops and attacking robbers with cycle constraints\",\"authors\":\"Alexander Clow ,&nbsp;Melissa A. Huggan ,&nbsp;M.E. Messinger\",\"doi\":\"10.1016/j.dam.2025.05.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper considers the Cops and Attacking Robbers game, a variant of Cops and Robbers, where the robber is empowered to attack a cop in the same way a cop can capture the robber. In a graph <span><math><mi>G</mi></math></span>, the number of cops required to capture a robber in the Cops and Attacking Robbers game is denoted by <span><math><mrow><mo>cc</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. We give a sufficient condition for a triangle-free graph to have attacking cop number at most 2 and we characterise when outerplanar graphs have attacking cop number 2. We also prove that all bipartite planar graphs <span><math><mi>G</mi></math></span> have <span><math><mrow><mo>cc</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>4</mn></mrow></math></span> and show this is tight by constructing a bipartite planar graph <span><math><mi>G</mi></math></span> with <span><math><mrow><mo>cc</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>4</mn></mrow></math></span>. Finally we construct 17 non-isomorphic graphs <span><math><mi>H</mi></math></span> of order 58 with <span><math><mrow><mo>cc</mo><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>=</mo><mn>6</mn></mrow></math></span> and <span><math><mrow><mo>c</mo><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>=</mo><mn>3</mn></mrow></math></span>. This provides the first example of a graph <span><math><mi>H</mi></math></span> with <span><math><mrow><mo>cc</mo><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>−</mo><mo>c</mo><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>≥</mo><mn>3</mn></mrow></math></span>, extending work by Bonato et al. (2014). We conclude with a list of conjectures and open problems.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"373 \",\"pages\":\"Pages 327-342\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25002665\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002665","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了“警察与攻击劫匪”游戏,这是“警察与劫匪”游戏的一个变体,在这个游戏中,抢劫者被授权攻击警察,就像警察可以逮捕抢劫者一样。在图G中,在“警察与攻击劫匪”游戏中,抓获抢劫犯所需的警察数量用cc(G)表示。给出了无三角形图的攻击点数不超过2的充分条件,并刻画了外平面图的攻击点数为2的情况。通过构造一个cc(G)=4的二部平面图G,证明了所有二部平面图G都有cc(G)≤4,并证明了这是紧性的。最后构造了17个c(H)=6, c(H)=3的58阶非同构图H。这提供了第一个cc(H)−c(H)≥3的图H的例子,扩展了Bonato等人(2014)的工作。最后,我们列出了一系列的猜想和尚未解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cops and attacking robbers with cycle constraints
This paper considers the Cops and Attacking Robbers game, a variant of Cops and Robbers, where the robber is empowered to attack a cop in the same way a cop can capture the robber. In a graph G, the number of cops required to capture a robber in the Cops and Attacking Robbers game is denoted by cc(G). We give a sufficient condition for a triangle-free graph to have attacking cop number at most 2 and we characterise when outerplanar graphs have attacking cop number 2. We also prove that all bipartite planar graphs G have cc(G)4 and show this is tight by constructing a bipartite planar graph G with cc(G)=4. Finally we construct 17 non-isomorphic graphs H of order 58 with cc(H)=6 and c(H)=3. This provides the first example of a graph H with cc(H)c(H)3, extending work by Bonato et al. (2014). We conclude with a list of conjectures and open problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信