具有状态相关耗散的半线性梯度流的加权能量耗散方法

IF 2.3 2区 数学 Q1 MATHEMATICS
Goro Akagi , Ulisse Stefanelli , Riccardo Voso
{"title":"具有状态相关耗散的半线性梯度流的加权能量耗散方法","authors":"Goro Akagi ,&nbsp;Ulisse Stefanelli ,&nbsp;Riccardo Voso","doi":"10.1016/j.jde.2025.113431","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the Weighted Energy-Dissipation variational approach to semilinear gradient flows with state-dependent dissipation. A family of parameter-dependent functionals defined over entire trajectories is introduced and proved to admit global minimizers. These global minimizers correspond to solutions of elliptic-in-time regularizations of the limiting causal problem. By passing to the limit in the parameter we prove that such global minimizers converge, up to subsequences, to a solution of the gradient flow.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"440 ","pages":"Article 113431"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted energy-dissipation approach to semilinear gradient flows with state-dependent dissipation\",\"authors\":\"Goro Akagi ,&nbsp;Ulisse Stefanelli ,&nbsp;Riccardo Voso\",\"doi\":\"10.1016/j.jde.2025.113431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the Weighted Energy-Dissipation variational approach to semilinear gradient flows with state-dependent dissipation. A family of parameter-dependent functionals defined over entire trajectories is introduced and proved to admit global minimizers. These global minimizers correspond to solutions of elliptic-in-time regularizations of the limiting causal problem. By passing to the limit in the parameter we prove that such global minimizers converge, up to subsequences, to a solution of the gradient flow.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"440 \",\"pages\":\"Article 113431\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625004589\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625004589","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有状态相关耗散的半线性梯度流的加权能量耗散变分方法。引入了在整个轨迹上定义的一类参数相关泛函,并证明了它们具有全局极小性。这些全局极小值对应于极限因果问题的椭圆-时间正则化解。通过传递到参数的极限,我们证明了这样的全局极小值收敛于梯度流的解,直至子序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted energy-dissipation approach to semilinear gradient flows with state-dependent dissipation
We investigate the Weighted Energy-Dissipation variational approach to semilinear gradient flows with state-dependent dissipation. A family of parameter-dependent functionals defined over entire trajectories is introduced and proved to admit global minimizers. These global minimizers correspond to solutions of elliptic-in-time regularizations of the limiting causal problem. By passing to the limit in the parameter we prove that such global minimizers converge, up to subsequences, to a solution of the gradient flow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信