通过Al掺杂制备高热稳定透明导电金基薄膜

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Panmei Liu, Jianbo Zhang, Shuo Ma, Yuan Huang and Zumin Wang*, 
{"title":"通过Al掺杂制备高热稳定透明导电金基薄膜","authors":"Panmei Liu,&nbsp;Jianbo Zhang,&nbsp;Shuo Ma,&nbsp;Yuan Huang and Zumin Wang*,&nbsp;","doi":"10.1021/acs.cgd.5c0016810.1021/acs.cgd.5c00168","DOIUrl":null,"url":null,"abstract":"<p >Improving the wetting and thermal stability of thin metal films on the oxide substrates is essential to developing ultrathin, low-loss, and thermally stable metal films used for electronic and optoelectronic devices. Here, it is found that the wetting and thermal stability of thin Au films on the oxide substrates can be <b>simultaneously</b> improved by doping a small amount of Al (about 8 at. %) into Au. The Au(Al) film obtained full coverage on the ZnO substrate at a significantly low film thickness of 6 nm. Such Au(Al)/ZnO film with a 6 nm-thick Au(Al) layer exhibits low electrical resistivity (4.19 × 10<sup>–7</sup> Ω·m) and high optical transmittance (84% at λ = 550 nm). The surface morphology, surface roughness, and electrical conductivity of the Au(Al)/ZnO film with a 15 nm-thick Au(Al) layer remain practically unchanged upon annealing at temperatures <b>as high as 500 °C</b>. Quantitative thermodynamic calculations reveal that the significant improvement in the wetting and thermal stability of the Au(Al)/ZnO film originates fundamentally from the Al-induced decrease in the Gibbs energies of the Au(Al)|ZnO interface and the Au(Al) surface. These findings thus shed light on the development of transparent conductive metal films for high-temperature electronic and optoelectronic devices.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"25 10","pages":"3365–3373 3365–3373"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Thermal-Stable and Transparent Conductive Au-Based Thin Films through Al Doping\",\"authors\":\"Panmei Liu,&nbsp;Jianbo Zhang,&nbsp;Shuo Ma,&nbsp;Yuan Huang and Zumin Wang*,&nbsp;\",\"doi\":\"10.1021/acs.cgd.5c0016810.1021/acs.cgd.5c00168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Improving the wetting and thermal stability of thin metal films on the oxide substrates is essential to developing ultrathin, low-loss, and thermally stable metal films used for electronic and optoelectronic devices. Here, it is found that the wetting and thermal stability of thin Au films on the oxide substrates can be <b>simultaneously</b> improved by doping a small amount of Al (about 8 at. %) into Au. The Au(Al) film obtained full coverage on the ZnO substrate at a significantly low film thickness of 6 nm. Such Au(Al)/ZnO film with a 6 nm-thick Au(Al) layer exhibits low electrical resistivity (4.19 × 10<sup>–7</sup> Ω·m) and high optical transmittance (84% at λ = 550 nm). The surface morphology, surface roughness, and electrical conductivity of the Au(Al)/ZnO film with a 15 nm-thick Au(Al) layer remain practically unchanged upon annealing at temperatures <b>as high as 500 °C</b>. Quantitative thermodynamic calculations reveal that the significant improvement in the wetting and thermal stability of the Au(Al)/ZnO film originates fundamentally from the Al-induced decrease in the Gibbs energies of the Au(Al)|ZnO interface and the Au(Al) surface. These findings thus shed light on the development of transparent conductive metal films for high-temperature electronic and optoelectronic devices.</p>\",\"PeriodicalId\":34,\"journal\":{\"name\":\"Crystal Growth & Design\",\"volume\":\"25 10\",\"pages\":\"3365–3373 3365–3373\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Growth & Design\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.cgd.5c00168\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.5c00168","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

提高氧化物基板上金属薄膜的润湿和热稳定性对于开发用于电子和光电子器件的超薄、低损耗和热稳定的金属薄膜至关重要。在这里,我们发现通过少量的Al(约8 at)掺杂,可以同时改善氧化基板上Au薄膜的润湿性和热稳定性。%)变成Au。Au(Al)薄膜在ZnO衬底上得到了完全覆盖,薄膜厚度很低,只有6 nm。该Au(Al)/ZnO薄膜具有6 nm厚的Au(Al)层,具有低电阻率(4.19 × 10-7 Ω·m)和高透光率(λ = 550 nm处为84%)。在高达500℃的退火条件下,具有15 nm厚Au(Al)层的Au(Al)/ZnO薄膜的表面形貌、表面粗糙度和导电性基本保持不变。定量热力学计算表明,Au(Al)/ZnO薄膜的润湿性和热稳定性的显著改善主要源于Al诱导Au(Al)|ZnO界面和Au(Al)表面的吉布斯能的降低。这些发现有助于开发用于高温电子和光电子器件的透明导电金属薄膜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly Thermal-Stable and Transparent Conductive Au-Based Thin Films through Al Doping

Improving the wetting and thermal stability of thin metal films on the oxide substrates is essential to developing ultrathin, low-loss, and thermally stable metal films used for electronic and optoelectronic devices. Here, it is found that the wetting and thermal stability of thin Au films on the oxide substrates can be simultaneously improved by doping a small amount of Al (about 8 at. %) into Au. The Au(Al) film obtained full coverage on the ZnO substrate at a significantly low film thickness of 6 nm. Such Au(Al)/ZnO film with a 6 nm-thick Au(Al) layer exhibits low electrical resistivity (4.19 × 10–7 Ω·m) and high optical transmittance (84% at λ = 550 nm). The surface morphology, surface roughness, and electrical conductivity of the Au(Al)/ZnO film with a 15 nm-thick Au(Al) layer remain practically unchanged upon annealing at temperatures as high as 500 °C. Quantitative thermodynamic calculations reveal that the significant improvement in the wetting and thermal stability of the Au(Al)/ZnO film originates fundamentally from the Al-induced decrease in the Gibbs energies of the Au(Al)|ZnO interface and the Au(Al) surface. These findings thus shed light on the development of transparent conductive metal films for high-temperature electronic and optoelectronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信