{"title":"超灵敏化学发光探针检测Caspase-3活性","authors":"Rozan Tannous, Chi Zhang and Doron Shabat*, ","doi":"10.1021/acs.bioconjchem.5c0015110.1021/acs.bioconjchem.5c00151","DOIUrl":null,"url":null,"abstract":"<p >Caspase-3 is a pivotal enzyme in the apoptosis pathway that is responsible for executing programmed cell death through the cleavage of key cellular proteins. Existing fluorescence-based probes for caspase-3 detection suffer from limitations such as background noise from tissue autofluorescence and light scattering, reducing their sensitivity and real-time imaging capabilities. To overcome these limitations, we developed a chemiluminescent probe, Ac-DEVD-CL, that enables the highly sensitive and selective detection of caspase-3 activity. Upon caspase-3-mediated cleavage, the probe undergoes a self-immolative reaction that triggers a chemiluminescent signal, allowing real-time monitoring of the enzymatic activity. Probe Ac-DEVD-CL demonstrated an exceptionally high turn-on response, with a 5000-fold increase in the chemiluminescent signal upon enzymatic activation. The probe exhibited notable specificity for caspase-3, with minimal cross-reactivity toward other biologically relevant proteases and tumor-associated enzymes. Additionally, inhibition studies using the caspase-3 inhibitor confirmed that the probe’s activation is exclusively mediated by caspase-3. A direct comparison with the commercially available fluorescent probe revealed that probe Ac-DEVD-CL offers significantly improved sensitivity, achieving a signal-to-noise ratio 380-fold higher and a limit of detection 100-fold lower. These results establish probe Ac-DEVD-CL as a highly effective tool for detecting caspase-3 activity with superior precision. Finally, we validated the probe’s utility in imaging apoptosis in live cells. In 4T1 breast cancer cells treated with cisplatin, Ac-DEVD-CL generated a strong chemiluminescent signal, with a three-order-of-magnitude enhancement compared to untreated cells. Overall, the probe Ac-DEVD-CL demonstrates a significant improvement in detection sensitivity, providing a powerful and versatile chemiluminescent probe for real-time imaging of caspase-3 activity. Its exceptional sensitivity and selectivity could make it a valuable tool for cancer research, drug discovery, and therapeutic monitoring.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":"36 5","pages":"1113–1120 1113–1120"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.bioconjchem.5c00151","citationCount":"0","resultStr":"{\"title\":\"Super-Sensitive Chemiluminescent Probe for the Detection of Caspase-3 Activity\",\"authors\":\"Rozan Tannous, Chi Zhang and Doron Shabat*, \",\"doi\":\"10.1021/acs.bioconjchem.5c0015110.1021/acs.bioconjchem.5c00151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Caspase-3 is a pivotal enzyme in the apoptosis pathway that is responsible for executing programmed cell death through the cleavage of key cellular proteins. Existing fluorescence-based probes for caspase-3 detection suffer from limitations such as background noise from tissue autofluorescence and light scattering, reducing their sensitivity and real-time imaging capabilities. To overcome these limitations, we developed a chemiluminescent probe, Ac-DEVD-CL, that enables the highly sensitive and selective detection of caspase-3 activity. Upon caspase-3-mediated cleavage, the probe undergoes a self-immolative reaction that triggers a chemiluminescent signal, allowing real-time monitoring of the enzymatic activity. Probe Ac-DEVD-CL demonstrated an exceptionally high turn-on response, with a 5000-fold increase in the chemiluminescent signal upon enzymatic activation. The probe exhibited notable specificity for caspase-3, with minimal cross-reactivity toward other biologically relevant proteases and tumor-associated enzymes. Additionally, inhibition studies using the caspase-3 inhibitor confirmed that the probe’s activation is exclusively mediated by caspase-3. A direct comparison with the commercially available fluorescent probe revealed that probe Ac-DEVD-CL offers significantly improved sensitivity, achieving a signal-to-noise ratio 380-fold higher and a limit of detection 100-fold lower. These results establish probe Ac-DEVD-CL as a highly effective tool for detecting caspase-3 activity with superior precision. Finally, we validated the probe’s utility in imaging apoptosis in live cells. In 4T1 breast cancer cells treated with cisplatin, Ac-DEVD-CL generated a strong chemiluminescent signal, with a three-order-of-magnitude enhancement compared to untreated cells. Overall, the probe Ac-DEVD-CL demonstrates a significant improvement in detection sensitivity, providing a powerful and versatile chemiluminescent probe for real-time imaging of caspase-3 activity. Its exceptional sensitivity and selectivity could make it a valuable tool for cancer research, drug discovery, and therapeutic monitoring.</p>\",\"PeriodicalId\":29,\"journal\":{\"name\":\"Bioconjugate Chemistry\",\"volume\":\"36 5\",\"pages\":\"1113–1120 1113–1120\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.bioconjchem.5c00151\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioconjugate Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.bioconjchem.5c00151\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.bioconjchem.5c00151","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Super-Sensitive Chemiluminescent Probe for the Detection of Caspase-3 Activity
Caspase-3 is a pivotal enzyme in the apoptosis pathway that is responsible for executing programmed cell death through the cleavage of key cellular proteins. Existing fluorescence-based probes for caspase-3 detection suffer from limitations such as background noise from tissue autofluorescence and light scattering, reducing their sensitivity and real-time imaging capabilities. To overcome these limitations, we developed a chemiluminescent probe, Ac-DEVD-CL, that enables the highly sensitive and selective detection of caspase-3 activity. Upon caspase-3-mediated cleavage, the probe undergoes a self-immolative reaction that triggers a chemiluminescent signal, allowing real-time monitoring of the enzymatic activity. Probe Ac-DEVD-CL demonstrated an exceptionally high turn-on response, with a 5000-fold increase in the chemiluminescent signal upon enzymatic activation. The probe exhibited notable specificity for caspase-3, with minimal cross-reactivity toward other biologically relevant proteases and tumor-associated enzymes. Additionally, inhibition studies using the caspase-3 inhibitor confirmed that the probe’s activation is exclusively mediated by caspase-3. A direct comparison with the commercially available fluorescent probe revealed that probe Ac-DEVD-CL offers significantly improved sensitivity, achieving a signal-to-noise ratio 380-fold higher and a limit of detection 100-fold lower. These results establish probe Ac-DEVD-CL as a highly effective tool for detecting caspase-3 activity with superior precision. Finally, we validated the probe’s utility in imaging apoptosis in live cells. In 4T1 breast cancer cells treated with cisplatin, Ac-DEVD-CL generated a strong chemiluminescent signal, with a three-order-of-magnitude enhancement compared to untreated cells. Overall, the probe Ac-DEVD-CL demonstrates a significant improvement in detection sensitivity, providing a powerful and versatile chemiluminescent probe for real-time imaging of caspase-3 activity. Its exceptional sensitivity and selectivity could make it a valuable tool for cancer research, drug discovery, and therapeutic monitoring.
期刊介绍:
Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.