混合热物性伪数据生成的矩阵补全:以过量焓为例

IF 3.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Francesca Sarah Middleton,  and , Jamie Theo Cripwell*, 
{"title":"混合热物性伪数据生成的矩阵补全:以过量焓为例","authors":"Francesca Sarah Middleton,&nbsp; and ,&nbsp;Jamie Theo Cripwell*,&nbsp;","doi":"10.1021/acs.iecr.4c0457710.1021/acs.iecr.4c04577","DOIUrl":null,"url":null,"abstract":"<p >Composition-dependent thermophysical and transport properties are essential for accurate modeling and simulation of chemical processes, but data for parametrization are often sparse and expensive to generate. Matrix completion methods (MCMs), successfully applied to scalar-valued properties, have not been extended to higher-order properties. This work investigates the potential of MCMs to leverage the broad availability of binary mixture data to predict properties with such dependencies. Excess enthalpy in binary liquid mixtures (<i>H</i><sup><i>E</i></sup>) is used as a case study. By framing the development as pseudodata generation rather than direct prediction, we emphasize the role of data-driven approaches in improving fundamental models, notably for difficult properties like <i>H</i><sup><i>E</i></sup>. Using a simple coherence constraint, we show that parallelized MCMs for 1012 mixtures from 11 functional groups across 7 temperatures outperform the benchmark predictive UNIFAC (Dortmund) in 88% of systems. This study demonstrates the viability of pseudodata generation for higher-order thermophysical and transport properties.</p>","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"64 20","pages":"10286–10303 10286–10303"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.iecr.4c04577","citationCount":"0","resultStr":"{\"title\":\"Matrix Completion for Pseudodata Generation of Mixture Thermophysical Properties: A Case Study in Excess Enthalpy\",\"authors\":\"Francesca Sarah Middleton,&nbsp; and ,&nbsp;Jamie Theo Cripwell*,&nbsp;\",\"doi\":\"10.1021/acs.iecr.4c0457710.1021/acs.iecr.4c04577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Composition-dependent thermophysical and transport properties are essential for accurate modeling and simulation of chemical processes, but data for parametrization are often sparse and expensive to generate. Matrix completion methods (MCMs), successfully applied to scalar-valued properties, have not been extended to higher-order properties. This work investigates the potential of MCMs to leverage the broad availability of binary mixture data to predict properties with such dependencies. Excess enthalpy in binary liquid mixtures (<i>H</i><sup><i>E</i></sup>) is used as a case study. By framing the development as pseudodata generation rather than direct prediction, we emphasize the role of data-driven approaches in improving fundamental models, notably for difficult properties like <i>H</i><sup><i>E</i></sup>. Using a simple coherence constraint, we show that parallelized MCMs for 1012 mixtures from 11 functional groups across 7 temperatures outperform the benchmark predictive UNIFAC (Dortmund) in 88% of systems. This study demonstrates the viability of pseudodata generation for higher-order thermophysical and transport properties.</p>\",\"PeriodicalId\":39,\"journal\":{\"name\":\"Industrial & Engineering Chemistry Research\",\"volume\":\"64 20\",\"pages\":\"10286–10303 10286–10303\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.iecr.4c04577\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial & Engineering Chemistry Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.iecr.4c04577\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.iecr.4c04577","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

依赖于组分的热物理和输运性质对于化学过程的精确建模和模拟是必不可少的,但用于参数化的数据通常是稀疏的,并且生成成本昂贵。矩阵补全方法(mcm),成功地应用于标量值性质,尚未推广到高阶性质。这项工作研究了mcm利用二元混合物数据的广泛可用性来预测具有这种依赖性的属性的潜力。以二元液体混合物(HE)中的过量焓为例进行了研究。通过将发展框架为伪数据生成而不是直接预测,我们强调了数据驱动方法在改进基本模型中的作用,特别是对于像HE这样的困难属性。使用简单的相干约束,我们发现在7个温度下,来自11个官能团的1012种混合物的并行mcm在88%的系统中优于基准预测UNIFAC(多特蒙德)。这项研究证明了伪数据生成高阶热物理和输运性质的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matrix Completion for Pseudodata Generation of Mixture Thermophysical Properties: A Case Study in Excess Enthalpy

Composition-dependent thermophysical and transport properties are essential for accurate modeling and simulation of chemical processes, but data for parametrization are often sparse and expensive to generate. Matrix completion methods (MCMs), successfully applied to scalar-valued properties, have not been extended to higher-order properties. This work investigates the potential of MCMs to leverage the broad availability of binary mixture data to predict properties with such dependencies. Excess enthalpy in binary liquid mixtures (HE) is used as a case study. By framing the development as pseudodata generation rather than direct prediction, we emphasize the role of data-driven approaches in improving fundamental models, notably for difficult properties like HE. Using a simple coherence constraint, we show that parallelized MCMs for 1012 mixtures from 11 functional groups across 7 temperatures outperform the benchmark predictive UNIFAC (Dortmund) in 88% of systems. This study demonstrates the viability of pseudodata generation for higher-order thermophysical and transport properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信