含过渡金属羟基磷灰石磁性纳米颗粒的晶体化学设计

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Anatolii V. Korneev*, Elena S. Sergienko, Maria A. Kuz’mina, Andrey A. Pavlychev, Xenia O. Brykalova, S. Narayana Kalkura and Olga V. Frank-Kamenetskaya, 
{"title":"含过渡金属羟基磷灰石磁性纳米颗粒的晶体化学设计","authors":"Anatolii V. Korneev*,&nbsp;Elena S. Sergienko,&nbsp;Maria A. Kuz’mina,&nbsp;Andrey A. Pavlychev,&nbsp;Xenia O. Brykalova,&nbsp;S. Narayana Kalkura and Olga V. Frank-Kamenetskaya,&nbsp;","doi":"10.1021/acs.cgd.5c0031310.1021/acs.cgd.5c00313","DOIUrl":null,"url":null,"abstract":"<p >Incorporation of transition metals into hydroxyapatite (HAp) is a way to fabricate biocompatible magnetic nanoparticles (MNPs) for biomedical applications such as cancer hyperthermia and drug delivery. To develop a crystal-chemical design of HAp MNPs, a series of HAps doped with 3d elements (Mn, Fe, Co, Zn, Ni) were synthesized from aqueous solutions and studied using a wide set of methods, including powder X-ray diffraction (PXRD), vibrational spectroscopy, energy-dispersive X-ray (EDX) analysis, electron paramagnetic resonance (EPR), Mössbauer spectroscopy, X-ray photoelectron spectroscopy (XPS), SQUID magnetometry, and magnetic susceptibility measurements. It was shown that the limiting concentrations of all studied transition metals in HAp, and the concentrations beyond which HAp does not crystallize, are directly dependent on the proximity of the ionic radii of the dopants to Ca<sup>2+</sup> radius: Ca<sup>2+</sup> &gt; Mn<sup>2+</sup> &gt; Fe<sup>2+</sup> &gt; Co<sup>2+</sup> &gt; Zn<sup>2+</sup> &gt; Ni<sup>2+</sup> &gt; Fe<sup>3+</sup>. Doping of HAp with cations containing unpaired electrons in the 3d orbital (Mn<sup>2+</sup>, Fe<sup>2+</sup>, Fe<sup>3+</sup>, Co<sup>2+</sup>, Ni<sup>2+</sup>) leads to a diamagnetic–paramagnetic transition. The weak ferromagnetic or antiferromagnetic behavior of the synthesis products at cryogenic temperatures most likely originates from 3d-oxide impurities. The magnetic susceptibility of 3d-HAps, which is one of the key parameters of MNPs, is directly dependent not only on the number of unpaired electrons but also on the 3d element content in the HAp lattice. Discovered correlations between magnetic susceptibility and the crystal chemistry of HAp contribute to the development of directed synthesis of HAp MNPs with the required magnetic properties. HAp doped with ∼10 wt % Mn<sup>2+</sup> with a magnetic susceptibility of ∼4.2 × 10<sup>–5</sup> emu/g, is the most promising candidate for MNPs for biomedical applications.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"25 10","pages":"3481–3496 3481–3496"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystal-Chemical Design of Hydroxyapatite Magnetic Nanoparticles with Transition Metals\",\"authors\":\"Anatolii V. Korneev*,&nbsp;Elena S. Sergienko,&nbsp;Maria A. Kuz’mina,&nbsp;Andrey A. Pavlychev,&nbsp;Xenia O. Brykalova,&nbsp;S. Narayana Kalkura and Olga V. Frank-Kamenetskaya,&nbsp;\",\"doi\":\"10.1021/acs.cgd.5c0031310.1021/acs.cgd.5c00313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Incorporation of transition metals into hydroxyapatite (HAp) is a way to fabricate biocompatible magnetic nanoparticles (MNPs) for biomedical applications such as cancer hyperthermia and drug delivery. To develop a crystal-chemical design of HAp MNPs, a series of HAps doped with 3d elements (Mn, Fe, Co, Zn, Ni) were synthesized from aqueous solutions and studied using a wide set of methods, including powder X-ray diffraction (PXRD), vibrational spectroscopy, energy-dispersive X-ray (EDX) analysis, electron paramagnetic resonance (EPR), Mössbauer spectroscopy, X-ray photoelectron spectroscopy (XPS), SQUID magnetometry, and magnetic susceptibility measurements. It was shown that the limiting concentrations of all studied transition metals in HAp, and the concentrations beyond which HAp does not crystallize, are directly dependent on the proximity of the ionic radii of the dopants to Ca<sup>2+</sup> radius: Ca<sup>2+</sup> &gt; Mn<sup>2+</sup> &gt; Fe<sup>2+</sup> &gt; Co<sup>2+</sup> &gt; Zn<sup>2+</sup> &gt; Ni<sup>2+</sup> &gt; Fe<sup>3+</sup>. Doping of HAp with cations containing unpaired electrons in the 3d orbital (Mn<sup>2+</sup>, Fe<sup>2+</sup>, Fe<sup>3+</sup>, Co<sup>2+</sup>, Ni<sup>2+</sup>) leads to a diamagnetic–paramagnetic transition. The weak ferromagnetic or antiferromagnetic behavior of the synthesis products at cryogenic temperatures most likely originates from 3d-oxide impurities. The magnetic susceptibility of 3d-HAps, which is one of the key parameters of MNPs, is directly dependent not only on the number of unpaired electrons but also on the 3d element content in the HAp lattice. Discovered correlations between magnetic susceptibility and the crystal chemistry of HAp contribute to the development of directed synthesis of HAp MNPs with the required magnetic properties. HAp doped with ∼10 wt % Mn<sup>2+</sup> with a magnetic susceptibility of ∼4.2 × 10<sup>–5</sup> emu/g, is the most promising candidate for MNPs for biomedical applications.</p>\",\"PeriodicalId\":34,\"journal\":{\"name\":\"Crystal Growth & Design\",\"volume\":\"25 10\",\"pages\":\"3481–3496 3481–3496\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Growth & Design\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.cgd.5c00313\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.5c00313","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

将过渡金属掺入羟基磷灰石(HAp)是制造生物相容性磁性纳米颗粒(MNPs)的一种方法,可用于癌症热疗和药物输送等生物医学应用。为了开发HAp MNPs的晶体化学设计,从水溶液中合成了一系列掺杂三维元素(Mn, Fe, Co, Zn, Ni)的HAp,并使用多种方法进行了研究,包括粉末x射线衍射(PXRD),振动光谱,能量色散x射线(EDX)分析,电子顺磁共振(EPR), Mössbauer光谱,x射线光电子能谱(XPS), SQUID磁强计和磁化率测量。结果表明,所有研究的过渡金属在HAp中的极限浓度,以及超过HAp不结晶的浓度,直接取决于掺杂剂的离子半径与Ca2+半径的接近程度:Ca2+ >;Mn2 +比;价比;二氧化碳+比;Zn2 +比;Ni2 +比;Fe3 +。在三维轨道上掺杂含有未配对电子的阳离子(Mn2+, Fe2+, Fe3+, Co2+, Ni2+)的HAp导致了反磁-顺磁跃迁。合成产物在低温下的弱铁磁或反铁磁行为很可能是由3d氧化物杂质引起的。3d-HAp的磁化率是MNPs的关键参数之一,它不仅与未配对电子的数量直接相关,还与HAp晶格中三维元素的含量有关。发现磁化率与HAp晶体化学之间的相关性有助于定向合成具有所需磁性能的HAp MNPs。掺杂了~ 10 wt % Mn2+的HAp,磁化率为~ 4.2 × 10 - 5 emu/g,是最有希望用于生物医学应用的MNPs候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crystal-Chemical Design of Hydroxyapatite Magnetic Nanoparticles with Transition Metals

Incorporation of transition metals into hydroxyapatite (HAp) is a way to fabricate biocompatible magnetic nanoparticles (MNPs) for biomedical applications such as cancer hyperthermia and drug delivery. To develop a crystal-chemical design of HAp MNPs, a series of HAps doped with 3d elements (Mn, Fe, Co, Zn, Ni) were synthesized from aqueous solutions and studied using a wide set of methods, including powder X-ray diffraction (PXRD), vibrational spectroscopy, energy-dispersive X-ray (EDX) analysis, electron paramagnetic resonance (EPR), Mössbauer spectroscopy, X-ray photoelectron spectroscopy (XPS), SQUID magnetometry, and magnetic susceptibility measurements. It was shown that the limiting concentrations of all studied transition metals in HAp, and the concentrations beyond which HAp does not crystallize, are directly dependent on the proximity of the ionic radii of the dopants to Ca2+ radius: Ca2+ > Mn2+ > Fe2+ > Co2+ > Zn2+ > Ni2+ > Fe3+. Doping of HAp with cations containing unpaired electrons in the 3d orbital (Mn2+, Fe2+, Fe3+, Co2+, Ni2+) leads to a diamagnetic–paramagnetic transition. The weak ferromagnetic or antiferromagnetic behavior of the synthesis products at cryogenic temperatures most likely originates from 3d-oxide impurities. The magnetic susceptibility of 3d-HAps, which is one of the key parameters of MNPs, is directly dependent not only on the number of unpaired electrons but also on the 3d element content in the HAp lattice. Discovered correlations between magnetic susceptibility and the crystal chemistry of HAp contribute to the development of directed synthesis of HAp MNPs with the required magnetic properties. HAp doped with ∼10 wt % Mn2+ with a magnetic susceptibility of ∼4.2 × 10–5 emu/g, is the most promising candidate for MNPs for biomedical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信