催化纳米颗粒偶联免疫分析中的信号增强。

IF 8.2 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Christy J Sadler,Jan P Sandler,André Shamsabadi,Leah C Frenette,Adam Creamer,Molly M Stevens
{"title":"催化纳米颗粒偶联免疫分析中的信号增强。","authors":"Christy J Sadler,Jan P Sandler,André Shamsabadi,Leah C Frenette,Adam Creamer,Molly M Stevens","doi":"10.1021/acssensors.5c00995","DOIUrl":null,"url":null,"abstract":"Early diagnosis is vital for effective disease management, selection of appropriate treatment regimes, and surveillance and control of disease transmission. There is a growing need for point-of-need diagnostic platforms, such as lateral flow immunoassays (LFIAs), to reduce healthcare burdens, particularly in low-resource settings. However, LFIAs often suffer from inadequate sensitivity and exhibit limited dynamic ranges, leading to late-stage diagnosis or misdiagnosis. Here, we present a signal enhancement platform for use in both plate- and paper-based immunoassays, based on the formation of a coupled nanoparticle network. We demonstrate the coupling of an antigen-targeting detection probe with a secondary, catalytically active nanoparticle by utilizing secondary antibody interactions. Here, we show that signal enhancement is achieved through two functional mechanisms: network formation, facilitated by the secondary nanoparticle increasing the relative concentration of nanoparticles immobilized at the test zone; and the inclusion of catalytically active nanoparticles, which catalyze the oxidation of a chromogenic substrate at the test zone. Through this approach, we yielded a 40-fold improvement in the limit of detection (LOD) using 40 nm gold nanoparticle detection probes in spiked pooled human saliva. Further, the signal enhancement platform can be utilized alongside a range of detection probes, including gold nanoparticles, commonly employed for use in LFIAs. This work concludes by showcasing that the signal enhancement mechanism is compatible for use with complex sample matrices, such as human saliva.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"71 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signal Enhancement in Immunoassays via Coupling to Catalytic Nanoparticles.\",\"authors\":\"Christy J Sadler,Jan P Sandler,André Shamsabadi,Leah C Frenette,Adam Creamer,Molly M Stevens\",\"doi\":\"10.1021/acssensors.5c00995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Early diagnosis is vital for effective disease management, selection of appropriate treatment regimes, and surveillance and control of disease transmission. There is a growing need for point-of-need diagnostic platforms, such as lateral flow immunoassays (LFIAs), to reduce healthcare burdens, particularly in low-resource settings. However, LFIAs often suffer from inadequate sensitivity and exhibit limited dynamic ranges, leading to late-stage diagnosis or misdiagnosis. Here, we present a signal enhancement platform for use in both plate- and paper-based immunoassays, based on the formation of a coupled nanoparticle network. We demonstrate the coupling of an antigen-targeting detection probe with a secondary, catalytically active nanoparticle by utilizing secondary antibody interactions. Here, we show that signal enhancement is achieved through two functional mechanisms: network formation, facilitated by the secondary nanoparticle increasing the relative concentration of nanoparticles immobilized at the test zone; and the inclusion of catalytically active nanoparticles, which catalyze the oxidation of a chromogenic substrate at the test zone. Through this approach, we yielded a 40-fold improvement in the limit of detection (LOD) using 40 nm gold nanoparticle detection probes in spiked pooled human saliva. Further, the signal enhancement platform can be utilized alongside a range of detection probes, including gold nanoparticles, commonly employed for use in LFIAs. This work concludes by showcasing that the signal enhancement mechanism is compatible for use with complex sample matrices, such as human saliva.\",\"PeriodicalId\":24,\"journal\":{\"name\":\"ACS Sensors\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sensors\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acssensors.5c00995\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.5c00995","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

早期诊断对于有效的疾病管理、选择适当的治疗方案以及监测和控制疾病传播至关重要。为了减轻医疗负担,特别是在资源匮乏的环境中,越来越需要侧流免疫测定(LFIAs)等即时诊断平台。然而,LFIAs往往缺乏足够的敏感性和有限的动态范围,导致晚期诊断或误诊。在这里,我们提出了一个信号增强平台,用于基于板和纸的免疫分析,基于耦合纳米颗粒网络的形成。我们通过利用二抗相互作用证明了抗原靶向检测探针与二级催化活性纳米颗粒的偶联。在这里,我们发现信号增强是通过两种功能机制实现的:二级纳米颗粒促进了网络的形成,增加了固定在测试区的纳米颗粒的相对浓度;并包含催化活性纳米颗粒,催化在测试区显色底物的氧化。通过这种方法,我们在加标池人唾液中使用40纳米金纳米颗粒检测探针的检测限(LOD)提高了40倍。此外,信号增强平台可以与一系列检测探针一起使用,包括金纳米颗粒,通常用于LFIAs。这项工作通过展示信号增强机制与复杂样本矩阵(如人类唾液)的使用兼容而得出结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signal Enhancement in Immunoassays via Coupling to Catalytic Nanoparticles.
Early diagnosis is vital for effective disease management, selection of appropriate treatment regimes, and surveillance and control of disease transmission. There is a growing need for point-of-need diagnostic platforms, such as lateral flow immunoassays (LFIAs), to reduce healthcare burdens, particularly in low-resource settings. However, LFIAs often suffer from inadequate sensitivity and exhibit limited dynamic ranges, leading to late-stage diagnosis or misdiagnosis. Here, we present a signal enhancement platform for use in both plate- and paper-based immunoassays, based on the formation of a coupled nanoparticle network. We demonstrate the coupling of an antigen-targeting detection probe with a secondary, catalytically active nanoparticle by utilizing secondary antibody interactions. Here, we show that signal enhancement is achieved through two functional mechanisms: network formation, facilitated by the secondary nanoparticle increasing the relative concentration of nanoparticles immobilized at the test zone; and the inclusion of catalytically active nanoparticles, which catalyze the oxidation of a chromogenic substrate at the test zone. Through this approach, we yielded a 40-fold improvement in the limit of detection (LOD) using 40 nm gold nanoparticle detection probes in spiked pooled human saliva. Further, the signal enhancement platform can be utilized alongside a range of detection probes, including gold nanoparticles, commonly employed for use in LFIAs. This work concludes by showcasing that the signal enhancement mechanism is compatible for use with complex sample matrices, such as human saliva.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信