高性能锌离子电池用多位点脱溶分子工程环形添加剂

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jinliang Yan, Haozhen Dou, Mengke Su, Mi Xu, Sitong Liu, Siqi Qin, Beinuo Zhang, Kai Zong, Lichao Tan, Xin Wang, Zhongwei Chen
{"title":"高性能锌离子电池用多位点脱溶分子工程环形添加剂","authors":"Jinliang Yan, Haozhen Dou, Mengke Su, Mi Xu, Sitong Liu, Siqi Qin, Beinuo Zhang, Kai Zong, Lichao Tan, Xin Wang, Zhongwei Chen","doi":"10.1002/anie.202505372","DOIUrl":null,"url":null,"abstract":"Additive engineering can effectively relieve interface issues of aqueous zinc ion batteries (AZIBs), but most additives induce the sluggish interface kinetics and boosted polarization, especially at high current density and low temperature. Herein, the relationship between additive molecular structure and desolvation behaviour is built by utilizing a series of circular and linear sugar molecules as prototypes, which systematically reveals molecular size, steric configuration, electronic structure are design criteria for additives to achieve fast desolvation. As indicated by theoretical simulations and experiments, circular fructose (FRU) molecule with small size, quasi-planar adsorption configuration, and enhanced electron delocalization enables the compact electric double layer (EDL) with shorter Zn2+ diffusion path and lower activation energy via multi-site desolvation, thus obtaining the rapid interface kinetics and facilitating highly reversible zinc anode over a wide temperature range. Zn//Zn cell exhibits long cycle life exceeding 9500 hours, and Zn//NVO cell maintains 83.92% high-capacity retention after 2480 cycles under 6.95 μL mg-1 lean electrolyte and 11.94 mg cm-2 high loading.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"32 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecularly Engineered Circular Additive with Multi-site Desolvation for High-performance Zinc Ion Battery\",\"authors\":\"Jinliang Yan, Haozhen Dou, Mengke Su, Mi Xu, Sitong Liu, Siqi Qin, Beinuo Zhang, Kai Zong, Lichao Tan, Xin Wang, Zhongwei Chen\",\"doi\":\"10.1002/anie.202505372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Additive engineering can effectively relieve interface issues of aqueous zinc ion batteries (AZIBs), but most additives induce the sluggish interface kinetics and boosted polarization, especially at high current density and low temperature. Herein, the relationship between additive molecular structure and desolvation behaviour is built by utilizing a series of circular and linear sugar molecules as prototypes, which systematically reveals molecular size, steric configuration, electronic structure are design criteria for additives to achieve fast desolvation. As indicated by theoretical simulations and experiments, circular fructose (FRU) molecule with small size, quasi-planar adsorption configuration, and enhanced electron delocalization enables the compact electric double layer (EDL) with shorter Zn2+ diffusion path and lower activation energy via multi-site desolvation, thus obtaining the rapid interface kinetics and facilitating highly reversible zinc anode over a wide temperature range. Zn//Zn cell exhibits long cycle life exceeding 9500 hours, and Zn//NVO cell maintains 83.92% high-capacity retention after 2480 cycles under 6.95 μL mg-1 lean electrolyte and 11.94 mg cm-2 high loading.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202505372\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202505372","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

添加剂工程可以有效地解决水性锌离子电池(AZIBs)的界面问题,但大多数添加剂会导致界面动力学缓慢和极化增强,特别是在高电流密度和低温下。本文以一系列圆形和线性糖分子为原型,建立了添加剂分子结构与脱溶行为的关系,系统地揭示了分子大小、空间构型、电子结构是添加剂实现快速脱溶的设计标准。理论模拟和实验结果表明,圆形果糖(FRU)分子具有较小的尺寸、准平面吸附构型和增强的电子离域,可以通过多位点脱溶形成紧凑的双电层(EDL),具有较短的Zn2+扩散路径和较低的活化能,从而获得快速的界面动力学,便于锌阳极在宽温度范围内高度可逆。在6.95 μL mg-1贫电解质和11.94 mg cm-2高负载条件下,Zn//Zn电池的循环寿命超过9500 h,在2480次循环后仍保持83.92%的高容量保留率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecularly Engineered Circular Additive with Multi-site Desolvation for High-performance Zinc Ion Battery
Additive engineering can effectively relieve interface issues of aqueous zinc ion batteries (AZIBs), but most additives induce the sluggish interface kinetics and boosted polarization, especially at high current density and low temperature. Herein, the relationship between additive molecular structure and desolvation behaviour is built by utilizing a series of circular and linear sugar molecules as prototypes, which systematically reveals molecular size, steric configuration, electronic structure are design criteria for additives to achieve fast desolvation. As indicated by theoretical simulations and experiments, circular fructose (FRU) molecule with small size, quasi-planar adsorption configuration, and enhanced electron delocalization enables the compact electric double layer (EDL) with shorter Zn2+ diffusion path and lower activation energy via multi-site desolvation, thus obtaining the rapid interface kinetics and facilitating highly reversible zinc anode over a wide temperature range. Zn//Zn cell exhibits long cycle life exceeding 9500 hours, and Zn//NVO cell maintains 83.92% high-capacity retention after 2480 cycles under 6.95 μL mg-1 lean electrolyte and 11.94 mg cm-2 high loading.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信