{"title":"生态补水对入渗区水环境微生物反硝化作用的影响","authors":"Tianyao Jiang, Tongxin Sun, Zining Guo, Ji Lu, Fei Liu, Xiangyu Guan","doi":"10.1016/j.jhazmat.2025.138688","DOIUrl":null,"url":null,"abstract":"Ecological water replenishment (EWR) is a crucial strategy for solving regional water shortages, yet its ecological impacts warrant further exploration. This study investigated the microbial community succession mechanism in surface water (SW) and groundwater (GW), the denitrification potential of functional bacteria, and their responses to water replenishment events of the South-to-North Water Diversion (SNWD), the largest water transfer project in China. Nitrogen and antibiotic contamination, resulting from prolonged infiltration of reclaimed water, decreased following water replenishment event. During water replenishment, both SW and GW showed an increase of microbial denitrification capacities. Post-replenishment, SW microbial denitrification capacity continued to rise, while GW returned to the baseline levels. Total organic carbon (TOC) and antibiotic resistance genes (ARGs) were the primary factors influenced denitrification before and after water replenishment. Among the denitrification steps, NO<sub>2</sub><sup>-</sup>-N reduction was most affected, linked to microbial community reassembly and resource utilization alteration after water replenishment. Furthermore, random forest analysis identified potential bacterial indicators and combinations sensitive to water replenishments highlighting key denitrification functional bacteria. These findings offer critical insights for optimizing water resource management and improving EWR effectiveness.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"18 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Ecological Water Replenishment on Microbial Denitrification in Aquatic Environment of Infiltration Area\",\"authors\":\"Tianyao Jiang, Tongxin Sun, Zining Guo, Ji Lu, Fei Liu, Xiangyu Guan\",\"doi\":\"10.1016/j.jhazmat.2025.138688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ecological water replenishment (EWR) is a crucial strategy for solving regional water shortages, yet its ecological impacts warrant further exploration. This study investigated the microbial community succession mechanism in surface water (SW) and groundwater (GW), the denitrification potential of functional bacteria, and their responses to water replenishment events of the South-to-North Water Diversion (SNWD), the largest water transfer project in China. Nitrogen and antibiotic contamination, resulting from prolonged infiltration of reclaimed water, decreased following water replenishment event. During water replenishment, both SW and GW showed an increase of microbial denitrification capacities. Post-replenishment, SW microbial denitrification capacity continued to rise, while GW returned to the baseline levels. Total organic carbon (TOC) and antibiotic resistance genes (ARGs) were the primary factors influenced denitrification before and after water replenishment. Among the denitrification steps, NO<sub>2</sub><sup>-</sup>-N reduction was most affected, linked to microbial community reassembly and resource utilization alteration after water replenishment. Furthermore, random forest analysis identified potential bacterial indicators and combinations sensitive to water replenishments highlighting key denitrification functional bacteria. These findings offer critical insights for optimizing water resource management and improving EWR effectiveness.\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2025.138688\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.138688","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Effects of Ecological Water Replenishment on Microbial Denitrification in Aquatic Environment of Infiltration Area
Ecological water replenishment (EWR) is a crucial strategy for solving regional water shortages, yet its ecological impacts warrant further exploration. This study investigated the microbial community succession mechanism in surface water (SW) and groundwater (GW), the denitrification potential of functional bacteria, and their responses to water replenishment events of the South-to-North Water Diversion (SNWD), the largest water transfer project in China. Nitrogen and antibiotic contamination, resulting from prolonged infiltration of reclaimed water, decreased following water replenishment event. During water replenishment, both SW and GW showed an increase of microbial denitrification capacities. Post-replenishment, SW microbial denitrification capacity continued to rise, while GW returned to the baseline levels. Total organic carbon (TOC) and antibiotic resistance genes (ARGs) were the primary factors influenced denitrification before and after water replenishment. Among the denitrification steps, NO2--N reduction was most affected, linked to microbial community reassembly and resource utilization alteration after water replenishment. Furthermore, random forest analysis identified potential bacterial indicators and combinations sensitive to water replenishments highlighting key denitrification functional bacteria. These findings offer critical insights for optimizing water resource management and improving EWR effectiveness.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.