铁磁Ni3+中心和内置电场使晶格氧活化有效的电催化析氧

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Ju Wang , Yusheng Liu , Zhaoxu Wang , Jia Wang , Lin Tian , Lulu Lian , Wenchang Zhuang , Wenyou Zhu
{"title":"铁磁Ni3+中心和内置电场使晶格氧活化有效的电催化析氧","authors":"Ju Wang ,&nbsp;Yusheng Liu ,&nbsp;Zhaoxu Wang ,&nbsp;Jia Wang ,&nbsp;Lin Tian ,&nbsp;Lulu Lian ,&nbsp;Wenchang Zhuang ,&nbsp;Wenyou Zhu","doi":"10.1016/j.apsusc.2025.163577","DOIUrl":null,"url":null,"abstract":"<div><div>Despite considerable advances in water electrolysis, the oxygen evolution reaction (OER) remains the principal bottleneck. Herein, we tackle self-adaptive lattice oxygen activation by elucidating O–O coupling at the Ni<sub>1</sub>@CoOOH(1<!--> <!-->1<!--> <!-->1)/C heterojunction, a highly efficient OER electrocatalyst with magnetic interfaces. Under alkaline conditions, spontaneous surface reconstruction from Ni<sub>1</sub>@CoP(1<!--> <!-->1<!--> <!-->1)/C to Ni<sub>1</sub>@CoOOH(1<!--> <!-->1<!--> <!-->1)/C heterojunctions takes place, where the carbon shell safeguards Ni and Co sites against oxidative dissolution and structural collapse. Different from the adsorbate evolution mechanism initially occurred at Ni<sub>1</sub>@CoP(1<!--> <!-->1<!--> <!-->1)/C, lattice oxygen mechanism dominates on the magnetic Ni<sub>1</sub>@CoOOH(1<!--> <!-->1<!--> <!-->1)/C heterojunction under alkaline conditions (pH = 14). The O−O coupling, presenting its rate-determining step, requires a predicted overpotential η of 0.238 V. First-principles calculations reveal that Jahn-Teller distortion occurred at the surficial ferromagnetic Ni<sup>3+</sup> single-atom active center, together with the dynamic interfacial built-in electric fields in the Ni<sub>1</sub>@CoOOH(1<!--> <!-->1<!--> <!-->1)/C heterojunction, synergistically drive O–O coupling. This finding provides critical insights into lattice oxygen activation under alkaline conditions and open promising avenues for the rational design of high-performance heterogeneous electrocatalysts.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"706 ","pages":"Article 163577"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferromagnetic Ni3+ center and built-in electric fields enable lattice oxygen activation for efficient electrocatalytic oxygen evolution\",\"authors\":\"Ju Wang ,&nbsp;Yusheng Liu ,&nbsp;Zhaoxu Wang ,&nbsp;Jia Wang ,&nbsp;Lin Tian ,&nbsp;Lulu Lian ,&nbsp;Wenchang Zhuang ,&nbsp;Wenyou Zhu\",\"doi\":\"10.1016/j.apsusc.2025.163577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Despite considerable advances in water electrolysis, the oxygen evolution reaction (OER) remains the principal bottleneck. Herein, we tackle self-adaptive lattice oxygen activation by elucidating O–O coupling at the Ni<sub>1</sub>@CoOOH(1<!--> <!-->1<!--> <!-->1)/C heterojunction, a highly efficient OER electrocatalyst with magnetic interfaces. Under alkaline conditions, spontaneous surface reconstruction from Ni<sub>1</sub>@CoP(1<!--> <!-->1<!--> <!-->1)/C to Ni<sub>1</sub>@CoOOH(1<!--> <!-->1<!--> <!-->1)/C heterojunctions takes place, where the carbon shell safeguards Ni and Co sites against oxidative dissolution and structural collapse. Different from the adsorbate evolution mechanism initially occurred at Ni<sub>1</sub>@CoP(1<!--> <!-->1<!--> <!-->1)/C, lattice oxygen mechanism dominates on the magnetic Ni<sub>1</sub>@CoOOH(1<!--> <!-->1<!--> <!-->1)/C heterojunction under alkaline conditions (pH = 14). The O−O coupling, presenting its rate-determining step, requires a predicted overpotential η of 0.238 V. First-principles calculations reveal that Jahn-Teller distortion occurred at the surficial ferromagnetic Ni<sup>3+</sup> single-atom active center, together with the dynamic interfacial built-in electric fields in the Ni<sub>1</sub>@CoOOH(1<!--> <!-->1<!--> <!-->1)/C heterojunction, synergistically drive O–O coupling. This finding provides critical insights into lattice oxygen activation under alkaline conditions and open promising avenues for the rational design of high-performance heterogeneous electrocatalysts.</div></div>\",\"PeriodicalId\":247,\"journal\":{\"name\":\"Applied Surface Science\",\"volume\":\"706 \",\"pages\":\"Article 163577\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169433225012929\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225012929","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

尽管水电解技术取得了长足的进步,但析氧反应(OER)仍然是主要的瓶颈。在此,我们通过阐明Ni1@CoOOH(11 11 1)/C异质结(一种具有磁性界面的高效OER电催化剂)上的O-O耦合来解决自适应晶格氧活化问题。在碱性条件下,从Ni1@CoP(1111)/C到Ni1@CoOOH(1111)/C异质结发生了自发的表面重建,其中碳壳保护Ni和Co位点免受氧化溶解和结构崩溃。不同于最初发生在Ni1@CoP(1 11 1)/C条件下的吸附质演化机制,在碱性条件下( = 14),在磁性Ni1@CoOOH(1 11 1)/C异质结上,晶格氧机制占主导地位。O−O耦合是其速率决定步骤,预测过电位η为0.238 V。第一性原理计算表明,表面铁磁Ni3+单原子活性中心发生了Jahn-Teller畸变,与Ni1@CoOOH(1 1 1)/C异质结的动态界面内置电场一起,协同驱动O-O耦合。这一发现为碱性条件下晶格氧活化提供了重要的见解,并为合理设计高性能非均相电催化剂开辟了有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ferromagnetic Ni3+ center and built-in electric fields enable lattice oxygen activation for efficient electrocatalytic oxygen evolution

Ferromagnetic Ni3+ center and built-in electric fields enable lattice oxygen activation for efficient electrocatalytic oxygen evolution
Despite considerable advances in water electrolysis, the oxygen evolution reaction (OER) remains the principal bottleneck. Herein, we tackle self-adaptive lattice oxygen activation by elucidating O–O coupling at the Ni1@CoOOH(1 1 1)/C heterojunction, a highly efficient OER electrocatalyst with magnetic interfaces. Under alkaline conditions, spontaneous surface reconstruction from Ni1@CoP(1 1 1)/C to Ni1@CoOOH(1 1 1)/C heterojunctions takes place, where the carbon shell safeguards Ni and Co sites against oxidative dissolution and structural collapse. Different from the adsorbate evolution mechanism initially occurred at Ni1@CoP(1 1 1)/C, lattice oxygen mechanism dominates on the magnetic Ni1@CoOOH(1 1 1)/C heterojunction under alkaline conditions (pH = 14). The O−O coupling, presenting its rate-determining step, requires a predicted overpotential η of 0.238 V. First-principles calculations reveal that Jahn-Teller distortion occurred at the surficial ferromagnetic Ni3+ single-atom active center, together with the dynamic interfacial built-in electric fields in the Ni1@CoOOH(1 1 1)/C heterojunction, synergistically drive O–O coupling. This finding provides critical insights into lattice oxygen activation under alkaline conditions and open promising avenues for the rational design of high-performance heterogeneous electrocatalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信