Cs[(H2PO4)1-2y(HPO4)y]的相行为、晶体结构和超质子电导率:(1-x)CsH2PO4 - xCs2HPO4体系中与立方CsH2PO4类似的缺磷类似物

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Grace Xiong, Louis S. Wang and Sossina M. Haile
{"title":"Cs[(H2PO4)1-2y(HPO4)y]的相行为、晶体结构和超质子电导率:(1-x)CsH2PO4 - xCs2HPO4体系中与立方CsH2PO4类似的缺磷类似物","authors":"Grace Xiong, Louis S. Wang and Sossina M. Haile","doi":"10.1039/D4TA08426H","DOIUrl":null,"url":null,"abstract":"<p >A systematic study of the (1 − <em>x</em>)CsH<small><sub>2</sub></small>PO<small><sub>4</sub></small>–<em>x</em>Cs<small><sub>2</sub></small>HPO<small><sub>4</sub></small> system has been carried out to explore the possibility of modifying the phase behavior of CsH<small><sub>2</sub></small>PO<small><sub>4</sub></small> in the high temperature, superprotonic regime. Materials with <em>x</em> from 0 to 0.20 were characterized by <em>in situ</em> X-ray powder diffraction, simultaneous thermal analysis, and electrical impedance spectroscopy under a range of steam partial pressures. From these data, the phase diagram between CsH<small><sub>2</sub></small>PO<small><sub>4</sub></small> (<em>x</em> = 0) and Cs<small><sub>3</sub></small>(H<small><sub>1.5</sub></small>PO<small><sub>4</sub></small>)<small><sub>2</sub></small> (<em>x</em> = 0.5) was determined. The system displays eutectoid behavior, with an invariant point defined by a temperature of 192.0 ± 1.4 °C and a composition of <em>x</em> = 0.17 ± 0.01. At the eutectoid temperature, monoclinic CsH<small><sub>2</sub></small>PO<small><sub>4</sub></small> combines with Cs<small><sub>3</sub></small>(H<small><sub>1.5</sub></small>PO<small><sub>4</sub></small>)<small><sub>2</sub></small> to form α′′-CDP, a cubic variant of superprotonic CsH<small><sub>2</sub></small>PO<small><sub>4</sub></small>, in which Cs : P exceeds 1 : 1. This surprising result implies that cubic CsH<small><sub>2</sub></small>PO<small><sub>4</sub></small>, which crystallizes in the CsCl structure-type, can support a large excess of Cs. Rietveld structure refinement, along with a lattice parameter that decreases with increasing Cs content, reveals that the chemistry is accommodated <em>via</em> the presence of phosphate vacancies rather than Cs interstitials. Charge balance is presumed to be maintained <em>via</em> a concomitant decrease in the average number of protons per phosphate group. Accordingly, the stoichiometry of α′′-CDP is described as CsH<small><sub>2−3<em>y</em></sub></small>(PO<small><sub>4</sub></small>)<small><sub>1−<em>y</em></sub></small>, and the phosphate vacancy concentration can be at least as high as 17% (<em>x</em> = 0.20). The conductivity of the α′′-CDP materials is comparable to that of stoichiometric, superprotonic CDP, while providing access to a substantially wider temperature range of superprotonic transport. This study reveals the potential for creating advanced proton conductors using cation:anion off-stoichiometry as a new design principle.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 25","pages":" 19705-19716"},"PeriodicalIF":9.5000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d4ta08426h?page=search","citationCount":"0","resultStr":"{\"title\":\"Phase behavior, crystal structure, and superprotonic conductivity of Cs[(H2PO4)1−2y(HPO4)y]: phosphate deficient analogs to cubic CsH2PO4 in the (1 − x)CsH2PO4–xCs2HPO4 system†\",\"authors\":\"Grace Xiong, Louis S. Wang and Sossina M. Haile\",\"doi\":\"10.1039/D4TA08426H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A systematic study of the (1 − <em>x</em>)CsH<small><sub>2</sub></small>PO<small><sub>4</sub></small>–<em>x</em>Cs<small><sub>2</sub></small>HPO<small><sub>4</sub></small> system has been carried out to explore the possibility of modifying the phase behavior of CsH<small><sub>2</sub></small>PO<small><sub>4</sub></small> in the high temperature, superprotonic regime. Materials with <em>x</em> from 0 to 0.20 were characterized by <em>in situ</em> X-ray powder diffraction, simultaneous thermal analysis, and electrical impedance spectroscopy under a range of steam partial pressures. From these data, the phase diagram between CsH<small><sub>2</sub></small>PO<small><sub>4</sub></small> (<em>x</em> = 0) and Cs<small><sub>3</sub></small>(H<small><sub>1.5</sub></small>PO<small><sub>4</sub></small>)<small><sub>2</sub></small> (<em>x</em> = 0.5) was determined. The system displays eutectoid behavior, with an invariant point defined by a temperature of 192.0 ± 1.4 °C and a composition of <em>x</em> = 0.17 ± 0.01. At the eutectoid temperature, monoclinic CsH<small><sub>2</sub></small>PO<small><sub>4</sub></small> combines with Cs<small><sub>3</sub></small>(H<small><sub>1.5</sub></small>PO<small><sub>4</sub></small>)<small><sub>2</sub></small> to form α′′-CDP, a cubic variant of superprotonic CsH<small><sub>2</sub></small>PO<small><sub>4</sub></small>, in which Cs : P exceeds 1 : 1. This surprising result implies that cubic CsH<small><sub>2</sub></small>PO<small><sub>4</sub></small>, which crystallizes in the CsCl structure-type, can support a large excess of Cs. Rietveld structure refinement, along with a lattice parameter that decreases with increasing Cs content, reveals that the chemistry is accommodated <em>via</em> the presence of phosphate vacancies rather than Cs interstitials. Charge balance is presumed to be maintained <em>via</em> a concomitant decrease in the average number of protons per phosphate group. Accordingly, the stoichiometry of α′′-CDP is described as CsH<small><sub>2−3<em>y</em></sub></small>(PO<small><sub>4</sub></small>)<small><sub>1−<em>y</em></sub></small>, and the phosphate vacancy concentration can be at least as high as 17% (<em>x</em> = 0.20). The conductivity of the α′′-CDP materials is comparable to that of stoichiometric, superprotonic CDP, while providing access to a substantially wider temperature range of superprotonic transport. This study reveals the potential for creating advanced proton conductors using cation:anion off-stoichiometry as a new design principle.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 25\",\"pages\":\" 19705-19716\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d4ta08426h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta08426h\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta08426h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文对(1-x)CsH2PO4 - xCs2HPO4体系进行了系统的研究,探讨了在高温超质子状态下改变CsH2PO4相行为的可能性。在一定蒸汽分压范围内,用x射线原位粉末衍射、同步热分析和电阻抗谱对x = 0 ~ 0.20的材料进行了表征。根据这些数据,确定了CsH2PO4 (x = 0)与Cs3(H1.5PO4)2 (x = 0.5)之间的相图。该体系表现出共析行为,温度为192.0±1.4°C,组成为x = 0.17±0.01,具有恒定点。在共析温度下,单斜晶CsH2PO4与Cs3(H1.5PO4)2反应生成超质子CsH2PO4的三次变体α″-CDP, Cs:P超过1:1。因此,立方CsH2PO4结晶为CsCl结构型,可以支持大量过量的Cs。观察到晶格参数随着Cs含量的增加而降低,表明化学反应是通过磷酸盐空位而不是Cs间隙的存在来调节的。这种化学解释得到了Rietveld结构精化的支持。电荷平衡被认为是通过每个磷酸基团的平均质子数的减少来维持的。因此,α″-CDP的化学计量学(这里用来表示立方相中磷酸盐缺乏的符号)被描述为CsH2-3y(PO4)1-y。α″-CDP材料的电导率(x = 0.05, 0.10, 0.17和0.18)接近化学计量超质子CDP,同时提供了更宽的超质子传输温度范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Phase behavior, crystal structure, and superprotonic conductivity of Cs[(H2PO4)1−2y(HPO4)y]: phosphate deficient analogs to cubic CsH2PO4 in the (1 − x)CsH2PO4–xCs2HPO4 system†

Phase behavior, crystal structure, and superprotonic conductivity of Cs[(H2PO4)1−2y(HPO4)y]: phosphate deficient analogs to cubic CsH2PO4 in the (1 − x)CsH2PO4–xCs2HPO4 system†

A systematic study of the (1 − x)CsH2PO4xCs2HPO4 system has been carried out to explore the possibility of modifying the phase behavior of CsH2PO4 in the high temperature, superprotonic regime. Materials with x from 0 to 0.20 were characterized by in situ X-ray powder diffraction, simultaneous thermal analysis, and electrical impedance spectroscopy under a range of steam partial pressures. From these data, the phase diagram between CsH2PO4 (x = 0) and Cs3(H1.5PO4)2 (x = 0.5) was determined. The system displays eutectoid behavior, with an invariant point defined by a temperature of 192.0 ± 1.4 °C and a composition of x = 0.17 ± 0.01. At the eutectoid temperature, monoclinic CsH2PO4 combines with Cs3(H1.5PO4)2 to form α′′-CDP, a cubic variant of superprotonic CsH2PO4, in which Cs : P exceeds 1 : 1. This surprising result implies that cubic CsH2PO4, which crystallizes in the CsCl structure-type, can support a large excess of Cs. Rietveld structure refinement, along with a lattice parameter that decreases with increasing Cs content, reveals that the chemistry is accommodated via the presence of phosphate vacancies rather than Cs interstitials. Charge balance is presumed to be maintained via a concomitant decrease in the average number of protons per phosphate group. Accordingly, the stoichiometry of α′′-CDP is described as CsH2−3y(PO4)1−y, and the phosphate vacancy concentration can be at least as high as 17% (x = 0.20). The conductivity of the α′′-CDP materials is comparable to that of stoichiometric, superprotonic CDP, while providing access to a substantially wider temperature range of superprotonic transport. This study reveals the potential for creating advanced proton conductors using cation:anion off-stoichiometry as a new design principle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信