硅酸钙水合物的多尺度力学行为:来自实验和粗粒度计算的见解

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yu Zhang, Qingyang Liu, Liguo Wang, Dongshuai Hou, Jinyang Jiang
{"title":"硅酸钙水合物的多尺度力学行为:来自实验和粗粒度计算的见解","authors":"Yu Zhang, Qingyang Liu, Liguo Wang, Dongshuai Hou, Jinyang Jiang","doi":"10.1021/acsami.4c22154","DOIUrl":null,"url":null,"abstract":"Probing the mechanical mechanisms of aggregating nanograins is the key to advancing nanostructural material science; however, it is a great challenge due to the complex molecular behaviors and packing texture, spanning from the molecular scale to hundreds of nanometers. In this paper, we investigate the strength origin of aggregating cementitious nanograins, C–S–H gel. A statistical indentation analysis technique on decalcified hardened cement paste is conducted to decode the mechanical information on C–S–H molecules and their effective interactions. Then, these molecular-level attributes serve as parameter references for the coarse-grained computation of the tensile properties of the aggregating C–S–H grain cluster. The results unveil the nanoscale behaviors, including the packing configuration, stress–strain relation, stress spatial distribution, and fracture of the C–S–H cluster, and provide insight into the manner and extent to which molecular interactions and packing configuration impact the mechanical behaviors of the C–S–H gel. Load transfer mechanisms of the single/multi-interface and pores/cracks effect underlie the huge mechanical disparities between the multiscale.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"32 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale Mechanical Behavior of Calcium Silicate Hydrates: Insights from Experiments and Coarse-Grained Computation\",\"authors\":\"Yu Zhang, Qingyang Liu, Liguo Wang, Dongshuai Hou, Jinyang Jiang\",\"doi\":\"10.1021/acsami.4c22154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Probing the mechanical mechanisms of aggregating nanograins is the key to advancing nanostructural material science; however, it is a great challenge due to the complex molecular behaviors and packing texture, spanning from the molecular scale to hundreds of nanometers. In this paper, we investigate the strength origin of aggregating cementitious nanograins, C–S–H gel. A statistical indentation analysis technique on decalcified hardened cement paste is conducted to decode the mechanical information on C–S–H molecules and their effective interactions. Then, these molecular-level attributes serve as parameter references for the coarse-grained computation of the tensile properties of the aggregating C–S–H grain cluster. The results unveil the nanoscale behaviors, including the packing configuration, stress–strain relation, stress spatial distribution, and fracture of the C–S–H cluster, and provide insight into the manner and extent to which molecular interactions and packing configuration impact the mechanical behaviors of the C–S–H gel. Load transfer mechanisms of the single/multi-interface and pores/cracks effect underlie the huge mechanical disparities between the multiscale.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c22154\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c22154","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

探索纳米颗粒聚集的力学机制是推进纳米结构材料科学的关键;然而,由于复杂的分子行为和堆积结构,从分子尺度到数百纳米尺度,这是一个巨大的挑战。本文研究了聚集体胶凝纳米颗粒C-S-H凝胶的强度来源。采用统计压痕分析技术对脱钙硬化水泥浆体进行分析,解码C-S-H分子及其有效相互作用的力学信息。然后,这些分子水平的属性作为参数参考,用于粗粒度计算聚集的C-S-H晶粒团簇的拉伸性能。研究结果揭示了C-S-H凝胶的纳米尺度行为,包括堆积构型、应力-应变关系、应力空间分布和断裂,并揭示了分子相互作用和堆积构型对C-S-H凝胶力学行为的影响方式和程度。单/多界面和孔隙/裂纹效应的载荷传递机制是多尺度力学差异的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multiscale Mechanical Behavior of Calcium Silicate Hydrates: Insights from Experiments and Coarse-Grained Computation

Multiscale Mechanical Behavior of Calcium Silicate Hydrates: Insights from Experiments and Coarse-Grained Computation
Probing the mechanical mechanisms of aggregating nanograins is the key to advancing nanostructural material science; however, it is a great challenge due to the complex molecular behaviors and packing texture, spanning from the molecular scale to hundreds of nanometers. In this paper, we investigate the strength origin of aggregating cementitious nanograins, C–S–H gel. A statistical indentation analysis technique on decalcified hardened cement paste is conducted to decode the mechanical information on C–S–H molecules and their effective interactions. Then, these molecular-level attributes serve as parameter references for the coarse-grained computation of the tensile properties of the aggregating C–S–H grain cluster. The results unveil the nanoscale behaviors, including the packing configuration, stress–strain relation, stress spatial distribution, and fracture of the C–S–H cluster, and provide insight into the manner and extent to which molecular interactions and packing configuration impact the mechanical behaviors of the C–S–H gel. Load transfer mechanisms of the single/multi-interface and pores/cracks effect underlie the huge mechanical disparities between the multiscale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信