Muhammad Samee Mubarik, Zizhen Zhao, Mehdi Khoshnamvand, De‐Sheng Pei, Ailing Fu
{"title":"线粒体和光合疗法:重塑细胞代谢功能的关键策略","authors":"Muhammad Samee Mubarik, Zizhen Zhao, Mehdi Khoshnamvand, De‐Sheng Pei, Ailing Fu","doi":"10.1002/btm2.70027","DOIUrl":null,"url":null,"abstract":"Extranuclear organelle transplantation, an emerging field in cell biology and bioengineering, presents innovative therapeutic possibilities by transferring organelles such as mitochondria between cells or across species. In living organisms, mitochondria and chloroplasts are closely related to converting substances and energy within cells. Transplantation therapy of mitochondria seeks to rebuild cell metabolic function in diseased or damaged cells and has broad application potential in treating metabolic diseases. The therapies provide a distinctive technology for cellular restoration by targeting energy generation at the organelle level, which will offer new energy resources for animal cells. At present, mitochondrial transplantation therapy has been applied as a novel approach to rescue patients in clinical settings, and chloroplast‐based transplantation endows animal cells to utilize light energy (photosynthetic animal cells). In this review, we discuss the exciting development and application prospects of mitochondrial and photosynthetic therapy in biomedicine. The technology of extranuclear transplantation would exert innovative and profound impacts on biological therapy.","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"25 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitochondrial and photosynthetic therapy: A crucial strategy for remodeling cellular metabolic function\",\"authors\":\"Muhammad Samee Mubarik, Zizhen Zhao, Mehdi Khoshnamvand, De‐Sheng Pei, Ailing Fu\",\"doi\":\"10.1002/btm2.70027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extranuclear organelle transplantation, an emerging field in cell biology and bioengineering, presents innovative therapeutic possibilities by transferring organelles such as mitochondria between cells or across species. In living organisms, mitochondria and chloroplasts are closely related to converting substances and energy within cells. Transplantation therapy of mitochondria seeks to rebuild cell metabolic function in diseased or damaged cells and has broad application potential in treating metabolic diseases. The therapies provide a distinctive technology for cellular restoration by targeting energy generation at the organelle level, which will offer new energy resources for animal cells. At present, mitochondrial transplantation therapy has been applied as a novel approach to rescue patients in clinical settings, and chloroplast‐based transplantation endows animal cells to utilize light energy (photosynthetic animal cells). In this review, we discuss the exciting development and application prospects of mitochondrial and photosynthetic therapy in biomedicine. The technology of extranuclear transplantation would exert innovative and profound impacts on biological therapy.\",\"PeriodicalId\":9263,\"journal\":{\"name\":\"Bioengineering & Translational Medicine\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering & Translational Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/btm2.70027\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering & Translational Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btm2.70027","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Mitochondrial and photosynthetic therapy: A crucial strategy for remodeling cellular metabolic function
Extranuclear organelle transplantation, an emerging field in cell biology and bioengineering, presents innovative therapeutic possibilities by transferring organelles such as mitochondria between cells or across species. In living organisms, mitochondria and chloroplasts are closely related to converting substances and energy within cells. Transplantation therapy of mitochondria seeks to rebuild cell metabolic function in diseased or damaged cells and has broad application potential in treating metabolic diseases. The therapies provide a distinctive technology for cellular restoration by targeting energy generation at the organelle level, which will offer new energy resources for animal cells. At present, mitochondrial transplantation therapy has been applied as a novel approach to rescue patients in clinical settings, and chloroplast‐based transplantation endows animal cells to utilize light energy (photosynthetic animal cells). In this review, we discuss the exciting development and application prospects of mitochondrial and photosynthetic therapy in biomedicine. The technology of extranuclear transplantation would exert innovative and profound impacts on biological therapy.
期刊介绍:
Bioengineering & Translational Medicine, an official, peer-reviewed online open-access journal of the American Institute of Chemical Engineers (AIChE) and the Society for Biological Engineering (SBE), focuses on how chemical and biological engineering approaches drive innovative technologies and solutions that impact clinical practice and commercial healthcare products.