人类脑干白质束的概率映射与自动分割。

Mark D Olchanyi, David R Schreier, Jian Li, Chiara Maffei, Annabel Sorby-Adams, Hannah C Kinney, Brian C Healy, Holly J Freeman, Jared Shless, Christophe Destrieux, Henry Tregidgo, Juan Eugenio Iglesias, Emery N Brown, Brian L Edlow
{"title":"人类脑干白质束的概率映射与自动分割。","authors":"Mark D Olchanyi, David R Schreier, Jian Li, Chiara Maffei, Annabel Sorby-Adams, Hannah C Kinney, Brian C Healy, Holly J Freeman, Jared Shless, Christophe Destrieux, Henry Tregidgo, Juan Eugenio Iglesias, Emery N Brown, Brian L Edlow","doi":"10.1101/2025.05.01.25326687","DOIUrl":null,"url":null,"abstract":"<p><p>Brainstem white matter bundles are essential conduits for neural signaling involved in modulation of vital functions ranging from homeostasis to human consciousness. Their architecture forms the anatomic basis for brainstem connectomics, subcortical mesoscale circuit models, and deep brain navigation tools. However, their small size and complex morphology compared to cerebral white matter structures makes mapping and segmentation challenging in neuroimaging. This results in a near absence of automated brainstem white matter tracing methods. We leverage diffusion MRI tractography to create BrainStem Bundle Tool (BSBT), which segments eight key white matter bundles in the rostral brainstem. BSBT performs automated segmentation on a custom probabilistic fiber map generated from tractography with a convolutional neural network architecture tailored for detection of small structures. We demonstrate BSBTs robustness across diffusion MRI acquisition protocols through validation on healthy subject <i>in vivo</i> scans and <i>ex vivo</i> scans of brain specimens with corresponding histology. Using BSBT, we reveal distinct brainstem white matter bundle alterations in Alzheimer's disease, Parkinson's disease, and acute traumatic brain injury cohorts through tract-based analysis and classification tasks. Finally, we provide proof-of-principle evidence supporting the prognostic utility of BSBT in a longitudinal analysis of coma recovery. BSBT creates opportunities to automatically map brainstem white matter in large imaging cohorts and investigate its role in a broad spectrum of neurological disorders.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12083584/pdf/","citationCount":"0","resultStr":"{\"title\":\"Probabilistic Mapping and Automated Segmentation of Human Brainstem White Matter Bundles.\",\"authors\":\"Mark D Olchanyi, David R Schreier, Jian Li, Chiara Maffei, Annabel Sorby-Adams, Hannah C Kinney, Brian C Healy, Holly J Freeman, Jared Shless, Christophe Destrieux, Henry Tregidgo, Juan Eugenio Iglesias, Emery N Brown, Brian L Edlow\",\"doi\":\"10.1101/2025.05.01.25326687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brainstem white matter bundles are essential conduits for neural signaling involved in modulation of vital functions ranging from homeostasis to human consciousness. Their architecture forms the anatomic basis for brainstem connectomics, subcortical mesoscale circuit models, and deep brain navigation tools. However, their small size and complex morphology compared to cerebral white matter structures makes mapping and segmentation challenging in neuroimaging. This results in a near absence of automated brainstem white matter tracing methods. We leverage diffusion MRI tractography to create BrainStem Bundle Tool (BSBT), which segments eight key white matter bundles in the rostral brainstem. BSBT performs automated segmentation on a custom probabilistic fiber map generated from tractography with a convolutional neural network architecture tailored for detection of small structures. We demonstrate BSBTs robustness across diffusion MRI acquisition protocols through validation on healthy subject <i>in vivo</i> scans and <i>ex vivo</i> scans of brain specimens with corresponding histology. Using BSBT, we reveal distinct brainstem white matter bundle alterations in Alzheimer's disease, Parkinson's disease, and acute traumatic brain injury cohorts through tract-based analysis and classification tasks. Finally, we provide proof-of-principle evidence supporting the prognostic utility of BSBT in a longitudinal analysis of coma recovery. BSBT creates opportunities to automatically map brainstem white matter in large imaging cohorts and investigate its role in a broad spectrum of neurological disorders.</p>\",\"PeriodicalId\":94281,\"journal\":{\"name\":\"medRxiv : the preprint server for health sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12083584/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv : the preprint server for health sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2025.05.01.25326687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.05.01.25326687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑干白质束是神经信号传导的重要通道,参与调节从体内平衡到人类意识的重要功能。它们的结构构成了脑干连接组学、皮层下中尺度电路模型和深部脑导航工具的解剖学基础。然而,与大脑白质结构相比,它们的体积小,形态复杂,这给神经影像学的定位和分割带来了挑战。这导致几乎没有自动脑干白质追踪方法。我们利用弥散MRI束图创建了脑干束工具(BSBT),该工具分割了吻侧脑干中的八个关键白质束。BSBT在自定义概率纤维图上执行自动分割,该图由tractography生成,使用为检测小结构而定制的卷积神经网络架构。我们通过对健康受试者的体内扫描和相应组织学的脑标本的离体扫描验证,证明了BSBTs在扩散MRI采集方案中的稳健性。利用BSBT,我们通过基于束的分析和分类任务揭示了阿尔茨海默病、帕金森病和急性创伤性脑损伤队列中不同的脑干白质束改变。最后,我们提供了原则性证据,支持BSBT在昏迷恢复的纵向分析中的预后效用。BSBT创造了在大型成像队列中自动绘制脑干白质的机会,并研究其在广泛的神经系统疾病中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic Mapping and Automated Segmentation of Human Brainstem White Matter Bundles.

Brainstem white matter bundles are essential conduits for neural signaling involved in modulation of vital functions ranging from homeostasis to human consciousness. Their architecture forms the anatomic basis for brainstem connectomics, subcortical mesoscale circuit models, and deep brain navigation tools. However, their small size and complex morphology compared to cerebral white matter structures makes mapping and segmentation challenging in neuroimaging. This results in a near absence of automated brainstem white matter tracing methods. We leverage diffusion MRI tractography to create BrainStem Bundle Tool (BSBT), which segments eight key white matter bundles in the rostral brainstem. BSBT performs automated segmentation on a custom probabilistic fiber map generated from tractography with a convolutional neural network architecture tailored for detection of small structures. We demonstrate BSBTs robustness across diffusion MRI acquisition protocols through validation on healthy subject in vivo scans and ex vivo scans of brain specimens with corresponding histology. Using BSBT, we reveal distinct brainstem white matter bundle alterations in Alzheimer's disease, Parkinson's disease, and acute traumatic brain injury cohorts through tract-based analysis and classification tasks. Finally, we provide proof-of-principle evidence supporting the prognostic utility of BSBT in a longitudinal analysis of coma recovery. BSBT creates opportunities to automatically map brainstem white matter in large imaging cohorts and investigate its role in a broad spectrum of neurological disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信