利用人工神经网络预测细菌性阴道病的发展。

Jacob H Elnaggar, John W Lammons, Caleb M Ardizzone, Kristal J Aaron, Clayton Jacobs, Keonte J Graves, Sheridan D George, Meng Luo, Ashutosh Tamhane, Paweł Łaniewski, Alison J Quayle, Melissa M Herbst-Kralovetz, Nuno Cerca, Christina A Muzny, Christopher M Taylor
{"title":"利用人工神经网络预测细菌性阴道病的发展。","authors":"Jacob H Elnaggar, John W Lammons, Caleb M Ardizzone, Kristal J Aaron, Clayton Jacobs, Keonte J Graves, Sheridan D George, Meng Luo, Ashutosh Tamhane, Paweł Łaniewski, Alison J Quayle, Melissa M Herbst-Kralovetz, Nuno Cerca, Christina A Muzny, Christopher M Taylor","doi":"10.1101/2025.05.02.25326872","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial vaginosis (BV) is a dysbiosis of the vaginal microbiome, characterized by the depletion of protective <i>Lactobacillus</i> spp. and overgrowth of anaerobes. Artificial neural network (ANN) modeling of vaginal microbial communities offers an opportunity for early detection of incident BV (iBV). 16S rRNA gene sequencing and quantitative PCR was performed on longitudinal vaginal specimens collected from participants within 14 days of iBV or from healthy participants to calculate the inferred absolute abundance (IAA) of vaginal bacterial taxa. ANNs were trained using the IAA of vaginal taxa from 420 vaginal specimens to classify individual vaginal specimens as either pre-iBV (collected before iBV onset) or Healthy. Feature importance was assessed to understand how specific vaginal micro-organisms contributed to model predictions. ANN modeling accurately classified >97% of specimens as either pre-iBV or Healthy (sensitivity >96%, specificity >98%) using IAA of 20 vaginal taxa. Model prediction accuracy was maintained when training models using only a few key vaginal taxa. Models trained using only the top five most important features achieved an accuracy of >97%, sensitivity >92%, and specificity >99%. Model predictive accuracy was further improved by training models on specimens from white and black participants separately; using only three feature models achieved an accuracy >96%, sensitivity >91%, and specificity >91%. Feature analysis found that <i>Lactobacillus</i> species <i>L. gasseri</i> and <i>L. jensenii</i> differed in how they contributed to model predictions in models trained with data stratified by race. A total of 420 vaginal specimens were analyzed, providing a robust dataset for model training and validation.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12083586/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting Bacterial Vaginosis Development using Artificial Neural Networks.\",\"authors\":\"Jacob H Elnaggar, John W Lammons, Caleb M Ardizzone, Kristal J Aaron, Clayton Jacobs, Keonte J Graves, Sheridan D George, Meng Luo, Ashutosh Tamhane, Paweł Łaniewski, Alison J Quayle, Melissa M Herbst-Kralovetz, Nuno Cerca, Christina A Muzny, Christopher M Taylor\",\"doi\":\"10.1101/2025.05.02.25326872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacterial vaginosis (BV) is a dysbiosis of the vaginal microbiome, characterized by the depletion of protective <i>Lactobacillus</i> spp. and overgrowth of anaerobes. Artificial neural network (ANN) modeling of vaginal microbial communities offers an opportunity for early detection of incident BV (iBV). 16S rRNA gene sequencing and quantitative PCR was performed on longitudinal vaginal specimens collected from participants within 14 days of iBV or from healthy participants to calculate the inferred absolute abundance (IAA) of vaginal bacterial taxa. ANNs were trained using the IAA of vaginal taxa from 420 vaginal specimens to classify individual vaginal specimens as either pre-iBV (collected before iBV onset) or Healthy. Feature importance was assessed to understand how specific vaginal micro-organisms contributed to model predictions. ANN modeling accurately classified >97% of specimens as either pre-iBV or Healthy (sensitivity >96%, specificity >98%) using IAA of 20 vaginal taxa. Model prediction accuracy was maintained when training models using only a few key vaginal taxa. Models trained using only the top five most important features achieved an accuracy of >97%, sensitivity >92%, and specificity >99%. Model predictive accuracy was further improved by training models on specimens from white and black participants separately; using only three feature models achieved an accuracy >96%, sensitivity >91%, and specificity >91%. Feature analysis found that <i>Lactobacillus</i> species <i>L. gasseri</i> and <i>L. jensenii</i> differed in how they contributed to model predictions in models trained with data stratified by race. A total of 420 vaginal specimens were analyzed, providing a robust dataset for model training and validation.</p>\",\"PeriodicalId\":94281,\"journal\":{\"name\":\"medRxiv : the preprint server for health sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12083586/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv : the preprint server for health sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2025.05.02.25326872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.05.02.25326872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细菌性阴道病(BV)是阴道微生物群失调的一种,其特征是保护性乳杆菌的消耗和厌氧菌的过度生长。人工神经网络(ANN)阴道微生物群落的建模为早期发现事件细菌性阴道炎(iBV)提供了机会。对感染iBV 14天内或健康参与者的阴道纵向标本进行16S rRNA基因测序和定量PCR,计算推断阴道细菌分类群的绝对丰度(IAA)。利用420个阴道标本阴道分类群的IAA对人工神经网络进行训练,将单个阴道标本分类为iBV前期(在iBV发病前收集)或健康。评估特征的重要性,以了解特定的阴道微生物如何对模型预测做出贡献。人工神经网络模型使用20个阴道分类群的IAA准确地将bbbb97%的标本分类为前ibv或健康(灵敏度>96%,特异性>98%)。当只使用几个关键的阴道分类群训练模型时,模型预测的准确性保持不变。仅使用前5个最重要的特征训练的模型,准确率为>97%,灵敏度为>92%,特异性为>99%。分别对白人和黑人样本进行训练,进一步提高了模型的预测精度;仅使用三种特征模型,准确率为b> 96%,灵敏度为>91%,特异性为>91%。特征分析发现,在用种族分层数据训练的模型中,乳杆菌种加塞利乳杆菌和延森乳杆菌对模型预测的贡献不同。共分析了420个阴道标本,为模型训练和验证提供了强大的数据集。重要性:细菌性阴道病(BV)是最常见的阴道感染,与许多合并症有关。细菌性阴道炎与不孕、早产、盆腔炎和艾滋病毒/性传播感染风险增加有关。细菌性阴道炎在发病前很难发现,治疗后感染通常会复发。我们的模型允许通过测量阴道微生物组来准确地早期检测iBV,这可能成为确定哪些患者有患iBV风险的有价值的工具。早期发现iBV可能导致更广泛地采用对预防iBV有用的临床干预措施,如活体生物疗法、预防性抗生素和/或行为改变。我们的研究结果表明,准确预测所需的微生物靶点很少,从而促进了成本和时间有效的临床试验。同样,我们的研究强调了开发针对特定患者群体的个性化模型的价值,提高了准确性,同时减少了准确预测所需的分类群数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Bacterial Vaginosis Development using Artificial Neural Networks.

Bacterial vaginosis (BV) is a dysbiosis of the vaginal microbiome, characterized by the depletion of protective Lactobacillus spp. and overgrowth of anaerobes. Artificial neural network (ANN) modeling of vaginal microbial communities offers an opportunity for early detection of incident BV (iBV). 16S rRNA gene sequencing and quantitative PCR was performed on longitudinal vaginal specimens collected from participants within 14 days of iBV or from healthy participants to calculate the inferred absolute abundance (IAA) of vaginal bacterial taxa. ANNs were trained using the IAA of vaginal taxa from 420 vaginal specimens to classify individual vaginal specimens as either pre-iBV (collected before iBV onset) or Healthy. Feature importance was assessed to understand how specific vaginal micro-organisms contributed to model predictions. ANN modeling accurately classified >97% of specimens as either pre-iBV or Healthy (sensitivity >96%, specificity >98%) using IAA of 20 vaginal taxa. Model prediction accuracy was maintained when training models using only a few key vaginal taxa. Models trained using only the top five most important features achieved an accuracy of >97%, sensitivity >92%, and specificity >99%. Model predictive accuracy was further improved by training models on specimens from white and black participants separately; using only three feature models achieved an accuracy >96%, sensitivity >91%, and specificity >91%. Feature analysis found that Lactobacillus species L. gasseri and L. jensenii differed in how they contributed to model predictions in models trained with data stratified by race. A total of 420 vaginal specimens were analyzed, providing a robust dataset for model training and validation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信