多事件触发机制下交流孤岛微电网的分布式自适应最优二次控制。

Qin-Shuo Duan, Ze Tang, Dong Ding
{"title":"多事件触发机制下交流孤岛微电网的分布式自适应最优二次控制。","authors":"Qin-Shuo Duan, Ze Tang, Dong Ding","doi":"10.1016/j.isatra.2025.04.036","DOIUrl":null,"url":null,"abstract":"<p><p>This paper mainly proposes a novel distributed secondary event-triggering control strategy for AC islanded microgrid, which not only achieves the consistency of frequency and voltage but also considers the proportional sharing of active power. Compared to the traditional fixed periodic communication, the proposed multiple event-triggered strategy only conducts a sparse communication among distributed generators (DGs). For accelerating the convergence speed and saving the control costs efficiently, a time-varying adaptive updating law for frequency and voltage is proposed. Furthermore, it is confirmed that there is no Zeno behavior. Combined with Lyapunov stability theory, the control strategy is proven to be capable for driving the stability and consistency of microgrid. Finally, three numerical simulations are presented to demonstrate the effectiveness of control mechanisms.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed adaptive optimal secondary control for AC islanded microgrid under multiple event-triggered mechanisms.\",\"authors\":\"Qin-Shuo Duan, Ze Tang, Dong Ding\",\"doi\":\"10.1016/j.isatra.2025.04.036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper mainly proposes a novel distributed secondary event-triggering control strategy for AC islanded microgrid, which not only achieves the consistency of frequency and voltage but also considers the proportional sharing of active power. Compared to the traditional fixed periodic communication, the proposed multiple event-triggered strategy only conducts a sparse communication among distributed generators (DGs). For accelerating the convergence speed and saving the control costs efficiently, a time-varying adaptive updating law for frequency and voltage is proposed. Furthermore, it is confirmed that there is no Zeno behavior. Combined with Lyapunov stability theory, the control strategy is proven to be capable for driving the stability and consistency of microgrid. Finally, three numerical simulations are presented to demonstrate the effectiveness of control mechanisms.</p>\",\"PeriodicalId\":94059,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.isatra.2025.04.036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.04.036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要提出了一种新型的交流孤岛微电网分布式二次事件触发控制策略,该策略既实现了频率和电压的一致性,又考虑了有功功率的比例分担。与传统的固定周期通信相比,本文提出的多事件触发策略仅在分布式发电机(dg)之间进行稀疏通信。为了加快收敛速度和有效节约控制成本,提出了频率和电压的时变自适应更新律。进一步证实了不存在芝诺行为。结合李雅普诺夫稳定性理论,证明了该控制策略能够驱动微电网的稳定性和一致性。最后,通过三个数值仿真验证了控制机制的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed adaptive optimal secondary control for AC islanded microgrid under multiple event-triggered mechanisms.

This paper mainly proposes a novel distributed secondary event-triggering control strategy for AC islanded microgrid, which not only achieves the consistency of frequency and voltage but also considers the proportional sharing of active power. Compared to the traditional fixed periodic communication, the proposed multiple event-triggered strategy only conducts a sparse communication among distributed generators (DGs). For accelerating the convergence speed and saving the control costs efficiently, a time-varying adaptive updating law for frequency and voltage is proposed. Furthermore, it is confirmed that there is no Zeno behavior. Combined with Lyapunov stability theory, the control strategy is proven to be capable for driving the stability and consistency of microgrid. Finally, three numerical simulations are presented to demonstrate the effectiveness of control mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信