使用分布式观测数据进行治疗效果估计的联邦目标试验仿真。

Haoyang Li, Chengxi Zang, Zhenxing Xu, Weishen Pan, Suraj Rajendran, Yong Chen, Fei Wang
{"title":"使用分布式观测数据进行治疗效果估计的联邦目标试验仿真。","authors":"Haoyang Li, Chengxi Zang, Zhenxing Xu, Weishen Pan, Suraj Rajendran, Yong Chen, Fei Wang","doi":"10.1101/2025.05.02.25326905","DOIUrl":null,"url":null,"abstract":"<p><p>Target trial emulation (TTE) aims to estimate treatment effects by simulating randomized controlled trials using real-world observational data. Applying TTE across distributed datasets shows great promise in improving generalizability and power but is always infeasible due to privacy and data-sharing constraints. Here we propose a Federated Learning-based TTE framework, FL-TTE, that enables TTE across multiple sites without sharing patient-level data. FL-TTE incorporates federated protocol design, federated inverse probability of treatment weighting, and a federated Cox proportional hazards model to estimate time-to-event outcomes across heterogeneous data. We validated FL-TTE by emulating Sepsis trials using eICU and MIMIC-IV data from 192 hospitals, and Alzheimer's trials using INSIGHT Network across five New York City health systems. FL-TTE produced less biased estimates than traditional meta-analysis methods when compared to pooled results and is theoretically supported. Our FL-TTE enables federated treatment effect estimation across distributed and heterogeneous data in a privacy-preserved way.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12083601/pdf/","citationCount":"0","resultStr":"{\"title\":\"Federated Target Trial Emulation using Distributed Observational Data for Treatment Effect Estimation.\",\"authors\":\"Haoyang Li, Chengxi Zang, Zhenxing Xu, Weishen Pan, Suraj Rajendran, Yong Chen, Fei Wang\",\"doi\":\"10.1101/2025.05.02.25326905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Target trial emulation (TTE) aims to estimate treatment effects by simulating randomized controlled trials using real-world observational data. Applying TTE across distributed datasets shows great promise in improving generalizability and power but is always infeasible due to privacy and data-sharing constraints. Here we propose a Federated Learning-based TTE framework, FL-TTE, that enables TTE across multiple sites without sharing patient-level data. FL-TTE incorporates federated protocol design, federated inverse probability of treatment weighting, and a federated Cox proportional hazards model to estimate time-to-event outcomes across heterogeneous data. We validated FL-TTE by emulating Sepsis trials using eICU and MIMIC-IV data from 192 hospitals, and Alzheimer's trials using INSIGHT Network across five New York City health systems. FL-TTE produced less biased estimates than traditional meta-analysis methods when compared to pooled results and is theoretically supported. Our FL-TTE enables federated treatment effect estimation across distributed and heterogeneous data in a privacy-preserved way.</p>\",\"PeriodicalId\":94281,\"journal\":{\"name\":\"medRxiv : the preprint server for health sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12083601/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv : the preprint server for health sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2025.05.02.25326905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.05.02.25326905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目标试验模拟(TTE)旨在通过模拟随机对照试验,利用真实世界的观察数据来估计治疗效果。跨分布式数据集应用TTE在提高泛化性和能力方面显示出巨大的希望,但由于隐私和数据共享的限制,总是不可行的。在这里,我们提出了一个基于联邦学习的TTE框架,FL-TTE,它允许跨多个站点的TTE,而不共享患者级数据。FL-TTE结合了联邦协议设计、联邦反概率治疗权重和联邦Cox比例风险模型,以估计跨异构数据的时间到事件结果。我们通过模拟脓毒症试验(使用来自192家医院的eICU和MIMIC-IV数据)和阿尔茨海默氏症试验(使用纽约市5个卫生系统的INSIGHT网络)来验证FL-TTE。与合并结果相比,FL-TTE产生的偏差估计比传统的荟萃分析方法少,并且在理论上得到支持。我们的FL-TTE支持以保护隐私的方式跨分布式和异构数据进行联邦处理效果估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Federated Target Trial Emulation using Distributed Observational Data for Treatment Effect Estimation.

Target trial emulation (TTE) aims to estimate treatment effects by simulating randomized controlled trials using real-world observational data. Applying TTE across distributed datasets shows great promise in improving generalizability and power but is always infeasible due to privacy and data-sharing constraints. Here we propose a Federated Learning-based TTE framework, FL-TTE, that enables TTE across multiple sites without sharing patient-level data. FL-TTE incorporates federated protocol design, federated inverse probability of treatment weighting, and a federated Cox proportional hazards model to estimate time-to-event outcomes across heterogeneous data. We validated FL-TTE by emulating Sepsis trials using eICU and MIMIC-IV data from 192 hospitals, and Alzheimer's trials using INSIGHT Network across five New York City health systems. FL-TTE produced less biased estimates than traditional meta-analysis methods when compared to pooled results and is theoretically supported. Our FL-TTE enables federated treatment effect estimation across distributed and heterogeneous data in a privacy-preserved way.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信