基于深度学习的多基因评分提高了精神疾病预测的通用性。

Leonardo Cobuccio, Arnor I Sigurdsson, Kajsa-Lotta Georgii Hellberg, Morten Dybdahl Krebs, Jonas Meisner, Thomas Werge, Michael E Benros, Andrew J Schork, Simon Rasmussen
{"title":"基于深度学习的多基因评分提高了精神疾病预测的通用性。","authors":"Leonardo Cobuccio, Arnor I Sigurdsson, Kajsa-Lotta Georgii Hellberg, Morten Dybdahl Krebs, Jonas Meisner, Thomas Werge, Michael E Benros, Andrew J Schork, Simon Rasmussen","doi":"10.1101/2025.05.05.25326794","DOIUrl":null,"url":null,"abstract":"<p><p>Polygenic scores (PGSs) have emerged as promising tools for predicting complex traits from genetic data, however, their predictive performance for psychiatric disorders remains limited and the added value of deep learning (DL) over linear models is underexplored. In this study, we compared our DL model, Genome-Local-Net (GLN), with the linear model bigstatsr in predicting five psychiatric disorders-ADHD, ASD, BIP, MDD, and SCZ-using individual-level genotype data. We further assessed whether combining these <i>internal</i> (individual-based) PGSs with <i>external</i> (GWAS-derived) PGSs and family genetic risk scores (FGRSs) could improve prediction additively or synergistically. While GLN and bigstatsr performed similarly in-sample, GLN showed better generalization on an out-of-sample replication set for ADHD, ASD, and MDD, with an average AUROC gain of 0.026. Integrating <i>internal</i>, <i>external</i>, and family-based scores significantly improved ADHD prediction, though DL-based integration provided no consistent advantage over logistic models. These findings suggest that while DL may enhance generalizability for specific psychiatric traits, linear models remain competitive and effective for genetic risk prediction.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12083566/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based polygenic scores enhance generalizability of psychiatric disorders prediction.\",\"authors\":\"Leonardo Cobuccio, Arnor I Sigurdsson, Kajsa-Lotta Georgii Hellberg, Morten Dybdahl Krebs, Jonas Meisner, Thomas Werge, Michael E Benros, Andrew J Schork, Simon Rasmussen\",\"doi\":\"10.1101/2025.05.05.25326794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polygenic scores (PGSs) have emerged as promising tools for predicting complex traits from genetic data, however, their predictive performance for psychiatric disorders remains limited and the added value of deep learning (DL) over linear models is underexplored. In this study, we compared our DL model, Genome-Local-Net (GLN), with the linear model bigstatsr in predicting five psychiatric disorders-ADHD, ASD, BIP, MDD, and SCZ-using individual-level genotype data. We further assessed whether combining these <i>internal</i> (individual-based) PGSs with <i>external</i> (GWAS-derived) PGSs and family genetic risk scores (FGRSs) could improve prediction additively or synergistically. While GLN and bigstatsr performed similarly in-sample, GLN showed better generalization on an out-of-sample replication set for ADHD, ASD, and MDD, with an average AUROC gain of 0.026. Integrating <i>internal</i>, <i>external</i>, and family-based scores significantly improved ADHD prediction, though DL-based integration provided no consistent advantage over logistic models. These findings suggest that while DL may enhance generalizability for specific psychiatric traits, linear models remain competitive and effective for genetic risk prediction.</p>\",\"PeriodicalId\":94281,\"journal\":{\"name\":\"medRxiv : the preprint server for health sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12083566/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv : the preprint server for health sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2025.05.05.25326794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.05.05.25326794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多基因评分(pgs)已经成为从遗传数据中预测复杂特征的有前途的工具,然而,它们对精神疾病的预测性能仍然有限,深度学习(DL)对线性模型的附加价值尚未得到充分探索。在这项研究中,我们使用个体水平的基因型数据,比较了我们的DL模型,基因组-局部网络(GLN)与线性模型bigstatsr在预测五种精神疾病(adhd, ASD, BIP, MDD和scz)方面的效果。我们进一步评估了将这些内部(基于个体的)pgs与外部(gwas衍生的)pgs和家族遗传风险评分(FGRSs)结合是否可以增加或协同提高预测。虽然GLN和bigstatsr在样本内的表现相似,但GLN在ADHD、ASD和MDD的样本外复制集中表现出更好的泛化,平均AUROC增益为0.026。整合内部、外部和基于家庭的得分显著改善了ADHD预测,尽管基于dl的整合没有提供与逻辑模型一致的优势。这些发现表明,虽然深度学习可以提高特定精神特征的普遍性,但线性模型在遗传风险预测方面仍然具有竞争力和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning-based polygenic scores enhance generalizability of psychiatric disorders prediction.

Polygenic scores (PGSs) have emerged as promising tools for predicting complex traits from genetic data, however, their predictive performance for psychiatric disorders remains limited and the added value of deep learning (DL) over linear models is underexplored. In this study, we compared our DL model, Genome-Local-Net (GLN), with the linear model bigstatsr in predicting five psychiatric disorders-ADHD, ASD, BIP, MDD, and SCZ-using individual-level genotype data. We further assessed whether combining these internal (individual-based) PGSs with external (GWAS-derived) PGSs and family genetic risk scores (FGRSs) could improve prediction additively or synergistically. While GLN and bigstatsr performed similarly in-sample, GLN showed better generalization on an out-of-sample replication set for ADHD, ASD, and MDD, with an average AUROC gain of 0.026. Integrating internal, external, and family-based scores significantly improved ADHD prediction, though DL-based integration provided no consistent advantage over logistic models. These findings suggest that while DL may enhance generalizability for specific psychiatric traits, linear models remain competitive and effective for genetic risk prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信