在同工异构体水平上解码玉米花药发育过程中编码和非编码rna的复杂性。

IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ge Yan, Xuxu Ma, Wei Huang, Chunyu Wang, Yingjia Han, Shufang Wang, Han Liu, Mei Zhang
{"title":"在同工异构体水平上解码玉米花药发育过程中编码和非编码rna的复杂性。","authors":"Ge Yan, Xuxu Ma, Wei Huang, Chunyu Wang, Yingjia Han, Shufang Wang, Han Liu, Mei Zhang","doi":"10.1016/j.jgg.2025.05.005","DOIUrl":null,"url":null,"abstract":"<p><p>Anther is a key male reproductive organ that is essential for the plant life cycle, from the sporophyte to the gametophyte generation. To explore the isoform-level transcriptional landscape of developing anthers in maize (Zea mays L.), we analyzed Iso-Seq data from anthers collected at 10 developmental stages, together with strand-specific RNA-seq, CAGE-seq, and PAS-seq data. Of the 152,026 high-confidence full-length isoforms identified, 68.8% have not been described; these include 22,365 isoforms that originate from previously unannotated loci and 82,167 novel isoforms that originate from annotated protein-coding genes. Using our newly developed strategy to detect dynamic expression patterns of isoforms, we identified 13,899 differentially variable regions (DVRs); surprisingly, 1275 genes contain more than two DVRs, revealing highly efficient utilization of limited genic regions. We identified 7876 long non-coding RNAs (lncRNAs) from 4098 loci, most of which were preferentially expressed during cell differentiation and meiosis. We also detected 371 long-range interactions involving intergenic lncRNAs (lincRNAs); interestingly, 243 were lincRNA-gene ones, and the interacting genes were highly expressed in anthers, suggesting that many potential lncRNA regulators of key genes are required for anther development. This study provides valuable resources and fundamental information for studying the essential transcripts of key genes during anther development.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding the complexity of coding and non-coding RNAs across maize anther development at the isoform level.\",\"authors\":\"Ge Yan, Xuxu Ma, Wei Huang, Chunyu Wang, Yingjia Han, Shufang Wang, Han Liu, Mei Zhang\",\"doi\":\"10.1016/j.jgg.2025.05.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Anther is a key male reproductive organ that is essential for the plant life cycle, from the sporophyte to the gametophyte generation. To explore the isoform-level transcriptional landscape of developing anthers in maize (Zea mays L.), we analyzed Iso-Seq data from anthers collected at 10 developmental stages, together with strand-specific RNA-seq, CAGE-seq, and PAS-seq data. Of the 152,026 high-confidence full-length isoforms identified, 68.8% have not been described; these include 22,365 isoforms that originate from previously unannotated loci and 82,167 novel isoforms that originate from annotated protein-coding genes. Using our newly developed strategy to detect dynamic expression patterns of isoforms, we identified 13,899 differentially variable regions (DVRs); surprisingly, 1275 genes contain more than two DVRs, revealing highly efficient utilization of limited genic regions. We identified 7876 long non-coding RNAs (lncRNAs) from 4098 loci, most of which were preferentially expressed during cell differentiation and meiosis. We also detected 371 long-range interactions involving intergenic lncRNAs (lincRNAs); interestingly, 243 were lincRNA-gene ones, and the interacting genes were highly expressed in anthers, suggesting that many potential lncRNA regulators of key genes are required for anther development. This study provides valuable resources and fundamental information for studying the essential transcripts of key genes during anther development.</p>\",\"PeriodicalId\":54825,\"journal\":{\"name\":\"Journal of Genetics and Genomics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Genetics and Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jgg.2025.05.005\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jgg.2025.05.005","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

花药是植物从孢子体到配子体产生的整个生命周期中必不可少的重要生殖器官。为了探索玉米花药发育过程中异构体水平的转录格局,我们分析了10个发育阶段花药的Iso-Seq数据,以及链特异性RNA-seq、CAGE-seq和PAS-seq数据。在已鉴定的152026个高置信度全长异构体中,68.8%尚未描述;其中包括22,365种源自先前未注释的基因座的异构体和82,167种源自已注释的蛋白质编码基因的新异构体。使用我们新开发的策略来检测同工异构体的动态表达模式,我们确定了13,899个差异可变区域(dvr);令人惊讶的是,1275个基因含有两个以上的dvr,这表明有限基因区域的高效利用。我们从4,098个基因座中鉴定出7,876个长链非编码rna (lncrna),其中大多数在细胞分化和减数分裂过程中优先表达。我们还检测到涉及基因间lncRNAs (lincRNAs)的371种远程相互作用;有趣的是,243个是lincrna基因,相互作用的基因在花药中高度表达,这表明花药发育需要许多潜在的关键基因的lncRNA调节因子。本研究为研究花药发育过程中关键基因的转录本提供了宝贵的资源和基础信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decoding the complexity of coding and non-coding RNAs across maize anther development at the isoform level.

Anther is a key male reproductive organ that is essential for the plant life cycle, from the sporophyte to the gametophyte generation. To explore the isoform-level transcriptional landscape of developing anthers in maize (Zea mays L.), we analyzed Iso-Seq data from anthers collected at 10 developmental stages, together with strand-specific RNA-seq, CAGE-seq, and PAS-seq data. Of the 152,026 high-confidence full-length isoforms identified, 68.8% have not been described; these include 22,365 isoforms that originate from previously unannotated loci and 82,167 novel isoforms that originate from annotated protein-coding genes. Using our newly developed strategy to detect dynamic expression patterns of isoforms, we identified 13,899 differentially variable regions (DVRs); surprisingly, 1275 genes contain more than two DVRs, revealing highly efficient utilization of limited genic regions. We identified 7876 long non-coding RNAs (lncRNAs) from 4098 loci, most of which were preferentially expressed during cell differentiation and meiosis. We also detected 371 long-range interactions involving intergenic lncRNAs (lincRNAs); interestingly, 243 were lincRNA-gene ones, and the interacting genes were highly expressed in anthers, suggesting that many potential lncRNA regulators of key genes are required for anther development. This study provides valuable resources and fundamental information for studying the essential transcripts of key genes during anther development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Genetics and Genomics
Journal of Genetics and Genomics 生物-生化与分子生物学
CiteScore
8.20
自引率
3.40%
发文量
4756
审稿时长
14 days
期刊介绍: The Journal of Genetics and Genomics (JGG, formerly known as Acta Genetica Sinica ) is an international journal publishing peer-reviewed articles of novel and significant discoveries in the fields of genetics and genomics. Topics of particular interest include but are not limited to molecular genetics, developmental genetics, cytogenetics, epigenetics, medical genetics, population and evolutionary genetics, genomics and functional genomics as well as bioinformatics and computational biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信