巴马香猪关键发育阶段心脏发育的转录组学分析。

IF 4 1区 生物学 Q1 ZOOLOGY
Sheng-Nan Wang, Wen-Jie Tian, Deng-Ke Pan, Tang Hai, Yue-Hui Ma, Dan-Dan Wang, Lin Jiang
{"title":"巴马香猪关键发育阶段心脏发育的转录组学分析。","authors":"Sheng-Nan Wang, Wen-Jie Tian, Deng-Ke Pan, Tang Hai, Yue-Hui Ma, Dan-Dan Wang, Lin Jiang","doi":"10.24272/j.issn.2095-8137.2024.348","DOIUrl":null,"url":null,"abstract":"<p><p>Pigs have emerged as valuable large-animal models for cardiac xenotransplantation; however, the temporal dynamics of myocardial development in this species remains insufficiently defined. This study analyzed gene expression patterns across four key developmental stages (neonatal, juvenile, sexual maturity, and adulthood) to delineate the molecular mechanisms driving porcine myocardial development. Increases in heart weight were accompanied by proportional expansion of myocardial fiber area and chamber size, reflecting coordinated structural development. Transcriptomic profiling of myocardial tissue by RNA sequencing (RNA-seq) identified 2 189 differentially expressed genes (DEGs) across stage comparisons. Short time-series expression miner (STEM) analysis classified these DEGs into four major expression clusters enriched in pathways associated with myocardial development, immune responses, cell proliferation, and metabolic processes. Among 359 DEGs conserved across all developmental stages, six candidate genes were strongly associated with myocardial development. Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) confirmed a significant correlation between the expression of these candidate genes and myocardial development in porcine tissue. These findings establish a transcriptomic framework for porcine myocardial maturation and provide a molecular basis for advancing cardiac xenotransplantation.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"46 3","pages":"634-646"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptomic profiling of cardiac development in Bama Xiang pigs across key developmental stages.\",\"authors\":\"Sheng-Nan Wang, Wen-Jie Tian, Deng-Ke Pan, Tang Hai, Yue-Hui Ma, Dan-Dan Wang, Lin Jiang\",\"doi\":\"10.24272/j.issn.2095-8137.2024.348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pigs have emerged as valuable large-animal models for cardiac xenotransplantation; however, the temporal dynamics of myocardial development in this species remains insufficiently defined. This study analyzed gene expression patterns across four key developmental stages (neonatal, juvenile, sexual maturity, and adulthood) to delineate the molecular mechanisms driving porcine myocardial development. Increases in heart weight were accompanied by proportional expansion of myocardial fiber area and chamber size, reflecting coordinated structural development. Transcriptomic profiling of myocardial tissue by RNA sequencing (RNA-seq) identified 2 189 differentially expressed genes (DEGs) across stage comparisons. Short time-series expression miner (STEM) analysis classified these DEGs into four major expression clusters enriched in pathways associated with myocardial development, immune responses, cell proliferation, and metabolic processes. Among 359 DEGs conserved across all developmental stages, six candidate genes were strongly associated with myocardial development. Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) confirmed a significant correlation between the expression of these candidate genes and myocardial development in porcine tissue. These findings establish a transcriptomic framework for porcine myocardial maturation and provide a molecular basis for advancing cardiac xenotransplantation.</p>\",\"PeriodicalId\":48636,\"journal\":{\"name\":\"Zoological Research\",\"volume\":\"46 3\",\"pages\":\"634-646\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zoological Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.24272/j.issn.2095-8137.2024.348\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.24272/j.issn.2095-8137.2024.348","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

猪已成为心脏异种移植有价值的大型动物模型;然而,该物种心肌发育的时间动力学仍然不够明确。本研究分析了四个关键发育阶段(新生儿、幼年、性成熟和成年)的基因表达模式,以描绘驱动猪心肌发育的分子机制。心脏重量的增加伴随着心肌纤维面积和心室大小的比例扩张,反映了结构的协调发展。心肌组织转录组学分析通过RNA测序(RNA-seq)鉴定出2 189个不同阶段的差异表达基因(DEGs)。短时间序列表达挖掘(STEM)分析将这些deg分为四个主要的表达簇,这些表达簇在心肌发育、免疫反应、细胞增殖和代谢过程相关的途径中富集。在所有发育阶段保存的359个基因中,有6个候选基因与心肌发育密切相关。逆转录-实时定量聚合酶链反应(RT-qPCR)证实了这些候选基因的表达与猪组织心肌发育之间的显著相关性。这些发现建立了猪心肌成熟的转录组学框架,并为推进异种心脏移植提供了分子基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transcriptomic profiling of cardiac development in Bama Xiang pigs across key developmental stages.

Pigs have emerged as valuable large-animal models for cardiac xenotransplantation; however, the temporal dynamics of myocardial development in this species remains insufficiently defined. This study analyzed gene expression patterns across four key developmental stages (neonatal, juvenile, sexual maturity, and adulthood) to delineate the molecular mechanisms driving porcine myocardial development. Increases in heart weight were accompanied by proportional expansion of myocardial fiber area and chamber size, reflecting coordinated structural development. Transcriptomic profiling of myocardial tissue by RNA sequencing (RNA-seq) identified 2 189 differentially expressed genes (DEGs) across stage comparisons. Short time-series expression miner (STEM) analysis classified these DEGs into four major expression clusters enriched in pathways associated with myocardial development, immune responses, cell proliferation, and metabolic processes. Among 359 DEGs conserved across all developmental stages, six candidate genes were strongly associated with myocardial development. Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) confirmed a significant correlation between the expression of these candidate genes and myocardial development in porcine tissue. These findings establish a transcriptomic framework for porcine myocardial maturation and provide a molecular basis for advancing cardiac xenotransplantation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Zoological Research
Zoological Research Medicine-General Medicine
CiteScore
7.60
自引率
10.20%
发文量
1937
审稿时长
8 weeks
期刊介绍: Established in 1980, Zoological Research (ZR) is a bimonthly publication produced by Kunming Institute of Zoology, the Chinese Academy of Sciences, and the China Zoological Society. It publishes peer-reviewed original research article/review/report/note/letter to the editor/editorial in English on Primates and Animal Models, Conservation and Utilization of Animal Resources, and Animal Diversity and Evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信