Dan Han, Junfeng Zhao, Shaoyu Hao, Shenbo Fu, Ran Wei, Xin Zheng, Qian Zhao, Chengxin Liu, Hongfu Sun, Chengrui Fu, Zhongtang Wang, Wei Huang, Baosheng Li
{"title":"综合放射组学分析肿瘤周围和栖息地区域预测非小细胞肺癌新辅助免疫治疗和化疗的主要病理反应","authors":"Dan Han, Junfeng Zhao, Shaoyu Hao, Shenbo Fu, Ran Wei, Xin Zheng, Qian Zhao, Chengxin Liu, Hongfu Sun, Chengrui Fu, Zhongtang Wang, Wei Huang, Baosheng Li","doi":"10.21037/tlcr-2024-1131","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>It is crucial for clinical decision-making to identify non-small cell lung cancer (NSCLC) patients who are likely to achieve major pathological response (MPR) following neoadjuvant immunotherapy and chemotherapy (NICT). This study conducted a thorough analysis of the regions surrounding and within resectable NSCLC tumors, creating an integrative tumor microenvironment model that encompasses features of both the peri-tumoral areas and habitat-based subregions, aiming at enhancing accurate predictions and supporting clinical decision-making processes.</p><p><strong>Methods: </strong>Our study involved an analysis of 243 NSCLC patients from three centers, treated with NICT and surgery and categorized into training, validation, and test cohorts. We conducted an extensive analysis of the tumor area, examining the intra-tumoral zone and the surrounding peri-tumoral regions at 2 mm, 4 mm and 6 mm, developing an algorithm for delineating tumor habitats. Features were standardized with Z-scores and de-duplicated by retaining one from each highly correlated pair. We finalized the feature set using least absolute shrinkage and selection operator (LASSO) regression and 10-fold cross-validation, forming a robust radiomics signature for machine learning models. Clinical features underwent univariable and multivariable analyses, combining with peri-tumoral and habitat signatures in a nomogram, of which its diagnostic accuracy and clinical utility were evaluated using receiver operating characteristic (ROC), calibration curves, and decision curve analysis (DCA).</p><p><strong>Results: </strong>The cohort showed a 68% MPR rate, with histology identified as a key predictor. An integrated nomogram including histology, Peri6mm and habitat signatures outperformed individual models with an area under the curve (AUC) of 0.894 in the training cohort, 0.831 in validation and 0.799 in testing. The nomogram demonstrated a clear advantage in predictive probabilities, as evidenced by DCA curve results.</p><p><strong>Conclusions: </strong>Our study's development of a predictive model using a nomogram integrating clinical and radiomics features significantly improved MPR prediction in NSCLC patients undergoing NICT, enhancing clinical decision-making.</p>","PeriodicalId":23271,"journal":{"name":"Translational lung cancer research","volume":"14 4","pages":"1168-1184"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12082192/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrative radiomics analysis of peri-tumoral and habitat zones for predicting major pathological response to neoadjuvant immunotherapy and chemotherapy in non-small cell lung cancer.\",\"authors\":\"Dan Han, Junfeng Zhao, Shaoyu Hao, Shenbo Fu, Ran Wei, Xin Zheng, Qian Zhao, Chengxin Liu, Hongfu Sun, Chengrui Fu, Zhongtang Wang, Wei Huang, Baosheng Li\",\"doi\":\"10.21037/tlcr-2024-1131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>It is crucial for clinical decision-making to identify non-small cell lung cancer (NSCLC) patients who are likely to achieve major pathological response (MPR) following neoadjuvant immunotherapy and chemotherapy (NICT). This study conducted a thorough analysis of the regions surrounding and within resectable NSCLC tumors, creating an integrative tumor microenvironment model that encompasses features of both the peri-tumoral areas and habitat-based subregions, aiming at enhancing accurate predictions and supporting clinical decision-making processes.</p><p><strong>Methods: </strong>Our study involved an analysis of 243 NSCLC patients from three centers, treated with NICT and surgery and categorized into training, validation, and test cohorts. We conducted an extensive analysis of the tumor area, examining the intra-tumoral zone and the surrounding peri-tumoral regions at 2 mm, 4 mm and 6 mm, developing an algorithm for delineating tumor habitats. Features were standardized with Z-scores and de-duplicated by retaining one from each highly correlated pair. We finalized the feature set using least absolute shrinkage and selection operator (LASSO) regression and 10-fold cross-validation, forming a robust radiomics signature for machine learning models. Clinical features underwent univariable and multivariable analyses, combining with peri-tumoral and habitat signatures in a nomogram, of which its diagnostic accuracy and clinical utility were evaluated using receiver operating characteristic (ROC), calibration curves, and decision curve analysis (DCA).</p><p><strong>Results: </strong>The cohort showed a 68% MPR rate, with histology identified as a key predictor. An integrated nomogram including histology, Peri6mm and habitat signatures outperformed individual models with an area under the curve (AUC) of 0.894 in the training cohort, 0.831 in validation and 0.799 in testing. The nomogram demonstrated a clear advantage in predictive probabilities, as evidenced by DCA curve results.</p><p><strong>Conclusions: </strong>Our study's development of a predictive model using a nomogram integrating clinical and radiomics features significantly improved MPR prediction in NSCLC patients undergoing NICT, enhancing clinical decision-making.</p>\",\"PeriodicalId\":23271,\"journal\":{\"name\":\"Translational lung cancer research\",\"volume\":\"14 4\",\"pages\":\"1168-1184\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12082192/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational lung cancer research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.21037/tlcr-2024-1131\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational lung cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/tlcr-2024-1131","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Integrative radiomics analysis of peri-tumoral and habitat zones for predicting major pathological response to neoadjuvant immunotherapy and chemotherapy in non-small cell lung cancer.
Background: It is crucial for clinical decision-making to identify non-small cell lung cancer (NSCLC) patients who are likely to achieve major pathological response (MPR) following neoadjuvant immunotherapy and chemotherapy (NICT). This study conducted a thorough analysis of the regions surrounding and within resectable NSCLC tumors, creating an integrative tumor microenvironment model that encompasses features of both the peri-tumoral areas and habitat-based subregions, aiming at enhancing accurate predictions and supporting clinical decision-making processes.
Methods: Our study involved an analysis of 243 NSCLC patients from three centers, treated with NICT and surgery and categorized into training, validation, and test cohorts. We conducted an extensive analysis of the tumor area, examining the intra-tumoral zone and the surrounding peri-tumoral regions at 2 mm, 4 mm and 6 mm, developing an algorithm for delineating tumor habitats. Features were standardized with Z-scores and de-duplicated by retaining one from each highly correlated pair. We finalized the feature set using least absolute shrinkage and selection operator (LASSO) regression and 10-fold cross-validation, forming a robust radiomics signature for machine learning models. Clinical features underwent univariable and multivariable analyses, combining with peri-tumoral and habitat signatures in a nomogram, of which its diagnostic accuracy and clinical utility were evaluated using receiver operating characteristic (ROC), calibration curves, and decision curve analysis (DCA).
Results: The cohort showed a 68% MPR rate, with histology identified as a key predictor. An integrated nomogram including histology, Peri6mm and habitat signatures outperformed individual models with an area under the curve (AUC) of 0.894 in the training cohort, 0.831 in validation and 0.799 in testing. The nomogram demonstrated a clear advantage in predictive probabilities, as evidenced by DCA curve results.
Conclusions: Our study's development of a predictive model using a nomogram integrating clinical and radiomics features significantly improved MPR prediction in NSCLC patients undergoing NICT, enhancing clinical decision-making.
期刊介绍:
Translational Lung Cancer Research(TLCR, Transl Lung Cancer Res, Print ISSN 2218-6751; Online ISSN 2226-4477) is an international, peer-reviewed, open-access journal, which was founded in March 2012. TLCR is indexed by PubMed/PubMed Central and the Chemical Abstracts Service (CAS) Databases. It is published quarterly the first year, and published bimonthly since February 2013. It provides practical up-to-date information on prevention, early detection, diagnosis, and treatment of lung cancer. Specific areas of its interest include, but not limited to, multimodality therapy, markers, imaging, tumor biology, pathology, chemoprevention, and technical advances related to lung cancer.