Simran S Saund, Melissa K Gish, Jeremiah Choate, Trung H Le, Smaranda C Marinescu, Nathan R Neale
{"title":"硅光电阴极耦合CO2还原分子电催化剂的设计策略。","authors":"Simran S Saund, Melissa K Gish, Jeremiah Choate, Trung H Le, Smaranda C Marinescu, Nathan R Neale","doi":"10.1021/acsmaterialsau.5c00010","DOIUrl":null,"url":null,"abstract":"<p><p>We explore strategies for enhancing the electronic interaction between silicon nanocrystals (Si NCs) and surface-tethered molecular Re electrocatalysts ([Re]) as models for CO<sub>2</sub>-reducing photocathodes. Using density functional theory (DFT) combined with electrochemical, spectroscopic, and photocatalytic measurements, we determine that the intrinsic Si (<sup>i</sup>Si) NC conduction band energy in <sup>i</sup>Si-[Re] assemblies is below the [Re] lowest unoccupied molecular orbital (LUMO) and singly occupied molecular orbital energies even for strongly quantum-confined 3.0-3.9 nm diameter hydrogen- and methyl-terminated <sup>i</sup>Si NCs, respectively. We computationally analyze design strategies to align the semiconductor conduction band edge and electrocatalyst frontier molecular orbitals by varying the <sup>i</sup>Si NC size, introducing boron as a dopant in the Si NC, and modifying the attachment chemistry to the [Re] complex aryl ligand framework. Our DFT analysis identifies a target hybrid structure featuring B-doped silicon (B:Si) NCs and a direct bond between a surface atom and an sp<sup>2</sup>-hybridized carbon of the electrocatalyst bipyridine aryl ring ligand (B:Si-C<sub>Ar</sub>[Re]). We synthesize the B:Si-C<sub>Ar</sub>[Re] NC assembly and find evidence of direct hybridization between the B:Si NC and the surface [Re] electrocatalyst LUMO using electrochemical measurements and transient absorption spectroscopy. This work provides a blueprint for the design of new Si photocathode-molecular electrocatalyst hybrids for CO<sub>2</sub> reduction and related fuel-forming photocatalytic conversions.</p>","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"5 3","pages":"569-579"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12082352/pdf/","citationCount":"0","resultStr":"{\"title\":\"Design Strategies for Coupling CO<sub>2</sub> Reduction Molecular Electrocatalysts to Silicon Photocathodes.\",\"authors\":\"Simran S Saund, Melissa K Gish, Jeremiah Choate, Trung H Le, Smaranda C Marinescu, Nathan R Neale\",\"doi\":\"10.1021/acsmaterialsau.5c00010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We explore strategies for enhancing the electronic interaction between silicon nanocrystals (Si NCs) and surface-tethered molecular Re electrocatalysts ([Re]) as models for CO<sub>2</sub>-reducing photocathodes. Using density functional theory (DFT) combined with electrochemical, spectroscopic, and photocatalytic measurements, we determine that the intrinsic Si (<sup>i</sup>Si) NC conduction band energy in <sup>i</sup>Si-[Re] assemblies is below the [Re] lowest unoccupied molecular orbital (LUMO) and singly occupied molecular orbital energies even for strongly quantum-confined 3.0-3.9 nm diameter hydrogen- and methyl-terminated <sup>i</sup>Si NCs, respectively. We computationally analyze design strategies to align the semiconductor conduction band edge and electrocatalyst frontier molecular orbitals by varying the <sup>i</sup>Si NC size, introducing boron as a dopant in the Si NC, and modifying the attachment chemistry to the [Re] complex aryl ligand framework. Our DFT analysis identifies a target hybrid structure featuring B-doped silicon (B:Si) NCs and a direct bond between a surface atom and an sp<sup>2</sup>-hybridized carbon of the electrocatalyst bipyridine aryl ring ligand (B:Si-C<sub>Ar</sub>[Re]). We synthesize the B:Si-C<sub>Ar</sub>[Re] NC assembly and find evidence of direct hybridization between the B:Si NC and the surface [Re] electrocatalyst LUMO using electrochemical measurements and transient absorption spectroscopy. This work provides a blueprint for the design of new Si photocathode-molecular electrocatalyst hybrids for CO<sub>2</sub> reduction and related fuel-forming photocatalytic conversions.</p>\",\"PeriodicalId\":29798,\"journal\":{\"name\":\"ACS Materials Au\",\"volume\":\"5 3\",\"pages\":\"569-579\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12082352/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsmaterialsau.5c00010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/14 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsmaterialsau.5c00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/14 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
我们探索了增强硅纳米晶体(Si NCs)和表面拴系分子Re电催化剂([Re])之间电子相互作用的策略,作为二氧化碳还原光电阴极的模型。利用密度泛函理论(DFT)结合电化学、光谱和光催化测量,我们确定iSi-[Re]组装中的Si (iSi) NC导带能量低于[Re]最低的未占据分子轨道(LUMO)和单占据分子轨道能量,即使是强量子限制的3.0-3.9 nm直径的氢端和甲基端iSi NC。我们计算分析了通过改变iSi NC尺寸、在Si NC中引入硼作为掺杂剂以及改变[Re]络合物芳基配体框架的附着化学来对齐半导体导带边缘和电催化剂前沿分子轨道的设计策略。我们的DFT分析确定了一个目标杂化结构,该结构具有B掺杂硅(B:Si) NCs和电催化剂联吡啶芳基环配体(B:Si- car [Re])的表面原子与sp2杂化碳之间的直接键。我们合成了B:Si- car [Re] NC组件,并通过电化学测量和瞬态吸收光谱发现了B:Si NC与表面[Re]电催化剂LUMO之间直接杂化的证据。这项工作为设计用于二氧化碳还原和相关燃料形成光催化转化的新型硅光电阴极-分子电催化剂混合物提供了蓝图。
Design Strategies for Coupling CO2 Reduction Molecular Electrocatalysts to Silicon Photocathodes.
We explore strategies for enhancing the electronic interaction between silicon nanocrystals (Si NCs) and surface-tethered molecular Re electrocatalysts ([Re]) as models for CO2-reducing photocathodes. Using density functional theory (DFT) combined with electrochemical, spectroscopic, and photocatalytic measurements, we determine that the intrinsic Si (iSi) NC conduction band energy in iSi-[Re] assemblies is below the [Re] lowest unoccupied molecular orbital (LUMO) and singly occupied molecular orbital energies even for strongly quantum-confined 3.0-3.9 nm diameter hydrogen- and methyl-terminated iSi NCs, respectively. We computationally analyze design strategies to align the semiconductor conduction band edge and electrocatalyst frontier molecular orbitals by varying the iSi NC size, introducing boron as a dopant in the Si NC, and modifying the attachment chemistry to the [Re] complex aryl ligand framework. Our DFT analysis identifies a target hybrid structure featuring B-doped silicon (B:Si) NCs and a direct bond between a surface atom and an sp2-hybridized carbon of the electrocatalyst bipyridine aryl ring ligand (B:Si-CAr[Re]). We synthesize the B:Si-CAr[Re] NC assembly and find evidence of direct hybridization between the B:Si NC and the surface [Re] electrocatalyst LUMO using electrochemical measurements and transient absorption spectroscopy. This work provides a blueprint for the design of new Si photocathode-molecular electrocatalyst hybrids for CO2 reduction and related fuel-forming photocatalytic conversions.
期刊介绍:
ACS Materials Au is an open access journal publishing letters articles reviews and perspectives describing high-quality research at the forefront of fundamental and applied research and at the interface between materials and other disciplines such as chemistry engineering and biology. Papers that showcase multidisciplinary and innovative materials research addressing global challenges are especially welcome. Areas of interest include but are not limited to:Design synthesis characterization and evaluation of forefront and emerging materialsUnderstanding structure property performance relationships and their underlying mechanismsDevelopment of materials for energy environmental biomedical electronic and catalytic applications