连续时间的无监督模型构建。

IF 2.5 2区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Jonathan J Park, Zachary F Fisher, Michael D Hunter, Chad Shenk, Michael Russell, Peter C M Molenaar, Sy-Miin Chow
{"title":"连续时间的无监督模型构建。","authors":"Jonathan J Park, Zachary F Fisher, Michael D Hunter, Chad Shenk, Michael Russell, Peter C M Molenaar, Sy-Miin Chow","doi":"10.1080/10705511.2024.2429544","DOIUrl":null,"url":null,"abstract":"<p><p>Many of the advancements reconciling individual- and group-level results have occurred in the context of a discrete-time modeling framework. Discrete-time models are intuitive and offer relatively simple interpretations for the resulting dynamic structures; however, they do not possess the flexibility of models fitted in the continuous-time framework. We introduce ct-gimme, a continuous-time extension of the group iterative multiple model estimation (GIMME; Gates & Molenaar, 2012) procedure which enables researchers to fit complex, high dimensional dynamic networks in continuous-time. Our results indicate that ct-gimme outperforms <math><mi>N</mi> <mo>=</mo> <mn>1</mn></math> model fitting in continuous-time by pooling information across multiple subjects. Likewise, ct-gimme outperforms group-level model fitting in the presence of within-sample heterogeneity. We conclude with an empirical illustration and highlight limitations of the approach relating to identification of meaningful starting values.</p>","PeriodicalId":21964,"journal":{"name":"Structural Equation Modeling: A Multidisciplinary Journal","volume":"32 3","pages":"377-399"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12083780/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unsupervised Model Construction in Continuous-Time.\",\"authors\":\"Jonathan J Park, Zachary F Fisher, Michael D Hunter, Chad Shenk, Michael Russell, Peter C M Molenaar, Sy-Miin Chow\",\"doi\":\"10.1080/10705511.2024.2429544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many of the advancements reconciling individual- and group-level results have occurred in the context of a discrete-time modeling framework. Discrete-time models are intuitive and offer relatively simple interpretations for the resulting dynamic structures; however, they do not possess the flexibility of models fitted in the continuous-time framework. We introduce ct-gimme, a continuous-time extension of the group iterative multiple model estimation (GIMME; Gates & Molenaar, 2012) procedure which enables researchers to fit complex, high dimensional dynamic networks in continuous-time. Our results indicate that ct-gimme outperforms <math><mi>N</mi> <mo>=</mo> <mn>1</mn></math> model fitting in continuous-time by pooling information across multiple subjects. Likewise, ct-gimme outperforms group-level model fitting in the presence of within-sample heterogeneity. We conclude with an empirical illustration and highlight limitations of the approach relating to identification of meaningful starting values.</p>\",\"PeriodicalId\":21964,\"journal\":{\"name\":\"Structural Equation Modeling: A Multidisciplinary Journal\",\"volume\":\"32 3\",\"pages\":\"377-399\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12083780/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Equation Modeling: A Multidisciplinary Journal\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1080/10705511.2024.2429544\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Equation Modeling: A Multidisciplinary Journal","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/10705511.2024.2429544","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

许多协调个人和群体水平结果的进步都发生在离散时间建模框架的背景下。离散时间模型直观,对得到的动态结构提供相对简单的解释;然而,它们不具备在连续时间框架中拟合模型的灵活性。我们引入了群迭代多模型估计(GIMME)的连续时间扩展ct-gimme;Gates & Molenaar, 2012)程序,使研究人员能够适应复杂的,高维动态网络在连续时间。我们的研究结果表明,ct-gimme通过在多个受试者之间汇集信息,在连续时间内优于N = 1模型拟合。同样,在样本内异质性存在的情况下,ct-gimme优于组水平模型拟合。我们总结了一个实证说明,并强调了与识别有意义的起始值有关的方法的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Model Construction in Continuous-Time.

Many of the advancements reconciling individual- and group-level results have occurred in the context of a discrete-time modeling framework. Discrete-time models are intuitive and offer relatively simple interpretations for the resulting dynamic structures; however, they do not possess the flexibility of models fitted in the continuous-time framework. We introduce ct-gimme, a continuous-time extension of the group iterative multiple model estimation (GIMME; Gates & Molenaar, 2012) procedure which enables researchers to fit complex, high dimensional dynamic networks in continuous-time. Our results indicate that ct-gimme outperforms N = 1 model fitting in continuous-time by pooling information across multiple subjects. Likewise, ct-gimme outperforms group-level model fitting in the presence of within-sample heterogeneity. We conclude with an empirical illustration and highlight limitations of the approach relating to identification of meaningful starting values.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
11.70%
发文量
71
审稿时长
>12 weeks
期刊介绍: Structural Equation Modeling: A Multidisciplinary Journal publishes refereed scholarly work from all academic disciplines interested in structural equation modeling. These disciplines include, but are not limited to, psychology, medicine, sociology, education, political science, economics, management, and business/marketing. Theoretical articles address new developments; applied articles deal with innovative structural equation modeling applications; the Teacher’s Corner provides instructional modules on aspects of structural equation modeling; book and software reviews examine new modeling information and techniques; and advertising alerts readers to new products. Comments on technical or substantive issues addressed in articles or reviews published in the journal are encouraged; comments are reviewed, and authors of the original works are invited to respond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信