{"title":"转录组学和蛋白质组学分析发现,在脂肪来源的干细胞分泌组中,Decorin是捕获TGF-β1的主要抗纤维化成分。","authors":"Lin Kang, Zhujun Li, Fangyuan Li, Ziming Li, Liquan Wang, Tianhao Li, Jieyu Xiang, Songlu Tseng, Nanze Yu, Jiuzuo Huang, Xiao Long","doi":"10.1155/sci/1416567","DOIUrl":null,"url":null,"abstract":"<p><p>Adipose-derived stem cells (ADSCs) demonstrated therapeutic potential in various fibrotic diseases, with their paracrine proteins playing a crucial role. Nonetheless, the principal paracrine factors of ADSCs responsible for antifibrosis have not yet been well identified. To address this issue, we initially confirmed that ADSCs could attenuate fibrosis and suppress TGF-<i>β</i>1 in bleomycin-induced skin fibrosis mouse models. RNA-sequencing of the cocultured fibroblasts demonstrated that ADSCs effectively inhibited the TGF-<i>β</i>/Smad2 signaling pathway in fibroblasts through the paracrine approach. Proteomic analysis of the cell supernatant (CS) demonstrated a significant upregulation of 97 proteins in the secretome of ADSCs, among which decorin (DCN) exhibited a particularly elevated level of overexpression. Protein-protein interaction (PPI) network analysis indicated a strong correlation between DCN and TGF-<i>β</i>1, with DCN effectively trapping TGF-<i>β</i>1 through core protein binding. Cell experiments demonstrated that DCN could effectively inhibit TGF-<i>β</i>1-induced fibroblast proliferation. Therefore, it was concluded that DCN was a crucial protein in ADSC secretome that exerted antifibrotic effects by inhibiting TGF-<i>β</i>1. This study conducted an in-depth insight into the paracrine function of ADSCs through transcriptome and proteome analysis, identifying DCN as an essential paracrine factor mediating the antifibrotic effect of ADSCs, which could provide valuable theoretical support for the use of ADSC secretions as well as DCN in the treatment of fibrotic diseases.</p>","PeriodicalId":21962,"journal":{"name":"Stem Cells International","volume":"2025 ","pages":"1416567"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12084782/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transcriptome and Proteome Analysis Identify Decorin as a Principal Antifibrotic Component Trapping TGF-<i>β</i>1 Within Adipose-Derived Stem Cell Secretome.\",\"authors\":\"Lin Kang, Zhujun Li, Fangyuan Li, Ziming Li, Liquan Wang, Tianhao Li, Jieyu Xiang, Songlu Tseng, Nanze Yu, Jiuzuo Huang, Xiao Long\",\"doi\":\"10.1155/sci/1416567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adipose-derived stem cells (ADSCs) demonstrated therapeutic potential in various fibrotic diseases, with their paracrine proteins playing a crucial role. Nonetheless, the principal paracrine factors of ADSCs responsible for antifibrosis have not yet been well identified. To address this issue, we initially confirmed that ADSCs could attenuate fibrosis and suppress TGF-<i>β</i>1 in bleomycin-induced skin fibrosis mouse models. RNA-sequencing of the cocultured fibroblasts demonstrated that ADSCs effectively inhibited the TGF-<i>β</i>/Smad2 signaling pathway in fibroblasts through the paracrine approach. Proteomic analysis of the cell supernatant (CS) demonstrated a significant upregulation of 97 proteins in the secretome of ADSCs, among which decorin (DCN) exhibited a particularly elevated level of overexpression. Protein-protein interaction (PPI) network analysis indicated a strong correlation between DCN and TGF-<i>β</i>1, with DCN effectively trapping TGF-<i>β</i>1 through core protein binding. Cell experiments demonstrated that DCN could effectively inhibit TGF-<i>β</i>1-induced fibroblast proliferation. Therefore, it was concluded that DCN was a crucial protein in ADSC secretome that exerted antifibrotic effects by inhibiting TGF-<i>β</i>1. This study conducted an in-depth insight into the paracrine function of ADSCs through transcriptome and proteome analysis, identifying DCN as an essential paracrine factor mediating the antifibrotic effect of ADSCs, which could provide valuable theoretical support for the use of ADSC secretions as well as DCN in the treatment of fibrotic diseases.</p>\",\"PeriodicalId\":21962,\"journal\":{\"name\":\"Stem Cells International\",\"volume\":\"2025 \",\"pages\":\"1416567\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12084782/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cells International\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/sci/1416567\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/sci/1416567","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Transcriptome and Proteome Analysis Identify Decorin as a Principal Antifibrotic Component Trapping TGF-β1 Within Adipose-Derived Stem Cell Secretome.
Adipose-derived stem cells (ADSCs) demonstrated therapeutic potential in various fibrotic diseases, with their paracrine proteins playing a crucial role. Nonetheless, the principal paracrine factors of ADSCs responsible for antifibrosis have not yet been well identified. To address this issue, we initially confirmed that ADSCs could attenuate fibrosis and suppress TGF-β1 in bleomycin-induced skin fibrosis mouse models. RNA-sequencing of the cocultured fibroblasts demonstrated that ADSCs effectively inhibited the TGF-β/Smad2 signaling pathway in fibroblasts through the paracrine approach. Proteomic analysis of the cell supernatant (CS) demonstrated a significant upregulation of 97 proteins in the secretome of ADSCs, among which decorin (DCN) exhibited a particularly elevated level of overexpression. Protein-protein interaction (PPI) network analysis indicated a strong correlation between DCN and TGF-β1, with DCN effectively trapping TGF-β1 through core protein binding. Cell experiments demonstrated that DCN could effectively inhibit TGF-β1-induced fibroblast proliferation. Therefore, it was concluded that DCN was a crucial protein in ADSC secretome that exerted antifibrotic effects by inhibiting TGF-β1. This study conducted an in-depth insight into the paracrine function of ADSCs through transcriptome and proteome analysis, identifying DCN as an essential paracrine factor mediating the antifibrotic effect of ADSCs, which could provide valuable theoretical support for the use of ADSC secretions as well as DCN in the treatment of fibrotic diseases.
期刊介绍:
Stem Cells International is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies in all areas of stem cell biology and applications. The journal will consider basic, translational, and clinical research, including animal models and clinical trials.
Topics covered include, but are not limited to: embryonic stem cells; induced pluripotent stem cells; tissue-specific stem cells; stem cell differentiation; genetics and epigenetics; cancer stem cells; stem cell technologies; ethical, legal, and social issues.