Wynne Milhouse, Anna Clapp Organski, Xun Sun, Derek Ai, Baohua Zhou, Tzu-Wen L Cross, Hongxia Ren
{"title":"微生物组通过对大脑和肠道基因表达的差异调节影响小鼠代谢稳态。","authors":"Wynne Milhouse, Anna Clapp Organski, Xun Sun, Derek Ai, Baohua Zhou, Tzu-Wen L Cross, Hongxia Ren","doi":"10.14814/phy2.70373","DOIUrl":null,"url":null,"abstract":"<p><p>The gut microbiome (GMB) regulates digestion, metabolism, immunity, and energy homeostasis. This study investigates how gut microbiota integrate the regulation in the neuroendocrine and enteroendocrine systems, with a focus on G protein-coupled receptors (GPCRs) in the brain-gut axis and sex differences. Germ-free (GF) mice exhibited increased hypothalamic expression of the anorexigenic neuropeptide and decreased expression of the negative regulator of leptin signaling. GF males had significantly lower serum leptin levels compared to conventional (CON) males, highlighting a potential link between the microbiome and leptin resistance. In the gut, GF mice demonstrated heightened expression of anorexigenic gut hormones, including peptide YY (Pyy) and cholecystokinin (Cck), in addition to increased levels of G protein-coupled receptors (GPCRs) involved in gut hormone secretion and nutrient metabolism, particularly in females. While carbohydrate metabolism genes were upregulated in CON mice, lipid metabolism genes were predominantly higher in GF mice. These findings suggest that the gut microbiota downregulates genes involved in appetite suppression, modulates GPCRs linked to gut hormone secretion, and contributes to leptin resistance, particularly in males. This research underscores the importance of the gut microbiome in host metabolism and reveals potential molecular targets for novel treatments of metabolic diseases.</p>","PeriodicalId":20083,"journal":{"name":"Physiological Reports","volume":"13 10","pages":"e70373"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12087290/pdf/","citationCount":"0","resultStr":"{\"title\":\"Microbiome affects mice metabolic homeostasis via differential regulation of gene expression in the brain and gut.\",\"authors\":\"Wynne Milhouse, Anna Clapp Organski, Xun Sun, Derek Ai, Baohua Zhou, Tzu-Wen L Cross, Hongxia Ren\",\"doi\":\"10.14814/phy2.70373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The gut microbiome (GMB) regulates digestion, metabolism, immunity, and energy homeostasis. This study investigates how gut microbiota integrate the regulation in the neuroendocrine and enteroendocrine systems, with a focus on G protein-coupled receptors (GPCRs) in the brain-gut axis and sex differences. Germ-free (GF) mice exhibited increased hypothalamic expression of the anorexigenic neuropeptide and decreased expression of the negative regulator of leptin signaling. GF males had significantly lower serum leptin levels compared to conventional (CON) males, highlighting a potential link between the microbiome and leptin resistance. In the gut, GF mice demonstrated heightened expression of anorexigenic gut hormones, including peptide YY (Pyy) and cholecystokinin (Cck), in addition to increased levels of G protein-coupled receptors (GPCRs) involved in gut hormone secretion and nutrient metabolism, particularly in females. While carbohydrate metabolism genes were upregulated in CON mice, lipid metabolism genes were predominantly higher in GF mice. These findings suggest that the gut microbiota downregulates genes involved in appetite suppression, modulates GPCRs linked to gut hormone secretion, and contributes to leptin resistance, particularly in males. This research underscores the importance of the gut microbiome in host metabolism and reveals potential molecular targets for novel treatments of metabolic diseases.</p>\",\"PeriodicalId\":20083,\"journal\":{\"name\":\"Physiological Reports\",\"volume\":\"13 10\",\"pages\":\"e70373\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12087290/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14814/phy2.70373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14814/phy2.70373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Microbiome affects mice metabolic homeostasis via differential regulation of gene expression in the brain and gut.
The gut microbiome (GMB) regulates digestion, metabolism, immunity, and energy homeostasis. This study investigates how gut microbiota integrate the regulation in the neuroendocrine and enteroendocrine systems, with a focus on G protein-coupled receptors (GPCRs) in the brain-gut axis and sex differences. Germ-free (GF) mice exhibited increased hypothalamic expression of the anorexigenic neuropeptide and decreased expression of the negative regulator of leptin signaling. GF males had significantly lower serum leptin levels compared to conventional (CON) males, highlighting a potential link between the microbiome and leptin resistance. In the gut, GF mice demonstrated heightened expression of anorexigenic gut hormones, including peptide YY (Pyy) and cholecystokinin (Cck), in addition to increased levels of G protein-coupled receptors (GPCRs) involved in gut hormone secretion and nutrient metabolism, particularly in females. While carbohydrate metabolism genes were upregulated in CON mice, lipid metabolism genes were predominantly higher in GF mice. These findings suggest that the gut microbiota downregulates genes involved in appetite suppression, modulates GPCRs linked to gut hormone secretion, and contributes to leptin resistance, particularly in males. This research underscores the importance of the gut microbiome in host metabolism and reveals potential molecular targets for novel treatments of metabolic diseases.
期刊介绍:
Physiological Reports is an online only, open access journal that will publish peer reviewed research across all areas of basic, translational, and clinical physiology and allied disciplines. Physiological Reports is a collaboration between The Physiological Society and the American Physiological Society, and is therefore in a unique position to serve the international physiology community through quick time to publication while upholding a quality standard of sound research that constitutes a useful contribution to the field.