Hannah E Oswalt, Julie B Schram, Margaret O Amsler, Charles D Amsler, James B McClintock
{"title":"南极大藻相关的片脚类动物组合表现出对海洋酸化的长期抵抗。","authors":"Hannah E Oswalt, Julie B Schram, Margaret O Amsler, Charles D Amsler, James B McClintock","doi":"10.7717/peerj.19368","DOIUrl":null,"url":null,"abstract":"<p><p>The pH of the world's oceans has decreased since the Industrial Revolution due to the oceanic uptake of increased atmospheric CO<sub>2</sub> in a process called ocean acidification. Low pH has been linked to negative impacts on the calcification, growth, and survival of calcifying invertebrates. Along the Western Antarctic Peninsula, dominant brown macroalgae often shelter large numbers of diverse invertebrate mesograzers, many of which are calcified. Mesograzer assemblages in this region are often composed of large numbers of amphipods which have key roles in Antarctic macroalgal communities. Understanding the impacts of acidification on amphipods is vital for understanding how these communities will be impacted by climate change. To assess how long-term acidification may influence the survival of different members in these assemblages, mesograzers, particularly amphipods, associated with the brown alga <i>Desmarestia menziesii</i> were collected from the immediate vicinity of Palmer Station, Antarctica (S64°46', W64°03') in January 2020 and maintained under three different pH treatments simulating ambient conditions (approximately pH 8.1), near-future conditions for 2100 (pH 7.7), and distant future conditions (pH 7.3) for 52 days then enumerated. Total assemblage number and the relative proportion of each species in the assemblage were found to be similar across the pH treatments. These results suggest that amphipod assemblages associated with <i>D. menziesii</i> may be resistant to long-term exposure to decreased pH.</p>","PeriodicalId":19799,"journal":{"name":"PeerJ","volume":"13 ","pages":"e19368"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12083470/pdf/","citationCount":"0","resultStr":"{\"title\":\"Antarctic macroalgal-associated amphipod assemblages exhibit long-term resistance to ocean acidification.\",\"authors\":\"Hannah E Oswalt, Julie B Schram, Margaret O Amsler, Charles D Amsler, James B McClintock\",\"doi\":\"10.7717/peerj.19368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The pH of the world's oceans has decreased since the Industrial Revolution due to the oceanic uptake of increased atmospheric CO<sub>2</sub> in a process called ocean acidification. Low pH has been linked to negative impacts on the calcification, growth, and survival of calcifying invertebrates. Along the Western Antarctic Peninsula, dominant brown macroalgae often shelter large numbers of diverse invertebrate mesograzers, many of which are calcified. Mesograzer assemblages in this region are often composed of large numbers of amphipods which have key roles in Antarctic macroalgal communities. Understanding the impacts of acidification on amphipods is vital for understanding how these communities will be impacted by climate change. To assess how long-term acidification may influence the survival of different members in these assemblages, mesograzers, particularly amphipods, associated with the brown alga <i>Desmarestia menziesii</i> were collected from the immediate vicinity of Palmer Station, Antarctica (S64°46', W64°03') in January 2020 and maintained under three different pH treatments simulating ambient conditions (approximately pH 8.1), near-future conditions for 2100 (pH 7.7), and distant future conditions (pH 7.3) for 52 days then enumerated. Total assemblage number and the relative proportion of each species in the assemblage were found to be similar across the pH treatments. These results suggest that amphipod assemblages associated with <i>D. menziesii</i> may be resistant to long-term exposure to decreased pH.</p>\",\"PeriodicalId\":19799,\"journal\":{\"name\":\"PeerJ\",\"volume\":\"13 \",\"pages\":\"e19368\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12083470/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj.19368\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7717/peerj.19368","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Antarctic macroalgal-associated amphipod assemblages exhibit long-term resistance to ocean acidification.
The pH of the world's oceans has decreased since the Industrial Revolution due to the oceanic uptake of increased atmospheric CO2 in a process called ocean acidification. Low pH has been linked to negative impacts on the calcification, growth, and survival of calcifying invertebrates. Along the Western Antarctic Peninsula, dominant brown macroalgae often shelter large numbers of diverse invertebrate mesograzers, many of which are calcified. Mesograzer assemblages in this region are often composed of large numbers of amphipods which have key roles in Antarctic macroalgal communities. Understanding the impacts of acidification on amphipods is vital for understanding how these communities will be impacted by climate change. To assess how long-term acidification may influence the survival of different members in these assemblages, mesograzers, particularly amphipods, associated with the brown alga Desmarestia menziesii were collected from the immediate vicinity of Palmer Station, Antarctica (S64°46', W64°03') in January 2020 and maintained under three different pH treatments simulating ambient conditions (approximately pH 8.1), near-future conditions for 2100 (pH 7.7), and distant future conditions (pH 7.3) for 52 days then enumerated. Total assemblage number and the relative proportion of each species in the assemblage were found to be similar across the pH treatments. These results suggest that amphipod assemblages associated with D. menziesii may be resistant to long-term exposure to decreased pH.
期刊介绍:
PeerJ is an open access peer-reviewed scientific journal covering research in the biological and medical sciences. At PeerJ, authors take out a lifetime publication plan (for as little as $99) which allows them to publish articles in the journal for free, forever. PeerJ has 5 Nobel Prize Winners on the Board; they have won several industry and media awards; and they are widely recognized as being one of the most interesting recent developments in academic publishing.