Young Choon Park, Ajith Perera, Hyunsik Kim, Rodney J Bartlett
{"title":"金属K预边缘光谱的EOM-CCSD计算:三维过渡金属四氯化物。","authors":"Young Choon Park, Ajith Perera, Hyunsik Kim, Rodney J Bartlett","doi":"10.1063/5.0274777","DOIUrl":null,"url":null,"abstract":"<p><p>The metal K pre-edge spectra of 3d transition metal tetrachlorides (MCl4, M = Ti, Fe, Co, Ni, and Cu) are obtained using the equation of motion coupled cluster (EOM-CC) approach. These spectra are primarily influenced by two key contributions to the oscillator strength-the electric dipole and quadrupole transition moments-due to the possible mixing of 3d and 4p orbitals in transition metal atoms. The EOM-CC singles and doubles method incorporating a recently implemented formalism that includes all the second-order contributions to oscillator strength [i.e., beyond the customary dipole approximation, Park et al., J. Chem. Phys. 155, 094103 (2021)] provides a powerful tool for computing excitation energies and oscillator strengths. This approach enables accurate interpretation of experimental spectra and facilitates predictions when experimental data are unavailable. In the present study, we demonstrate how these new extensions to the EOM-CC method can be utilized to compute metal K pre-edge spectra and determine the orbital characteristics of MCl4 complexes.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 19","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EOM-CCSD calculation of metal K pre-edge spectra: 3d transition metal tetrachlorides.\",\"authors\":\"Young Choon Park, Ajith Perera, Hyunsik Kim, Rodney J Bartlett\",\"doi\":\"10.1063/5.0274777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The metal K pre-edge spectra of 3d transition metal tetrachlorides (MCl4, M = Ti, Fe, Co, Ni, and Cu) are obtained using the equation of motion coupled cluster (EOM-CC) approach. These spectra are primarily influenced by two key contributions to the oscillator strength-the electric dipole and quadrupole transition moments-due to the possible mixing of 3d and 4p orbitals in transition metal atoms. The EOM-CC singles and doubles method incorporating a recently implemented formalism that includes all the second-order contributions to oscillator strength [i.e., beyond the customary dipole approximation, Park et al., J. Chem. Phys. 155, 094103 (2021)] provides a powerful tool for computing excitation energies and oscillator strengths. This approach enables accurate interpretation of experimental spectra and facilitates predictions when experimental data are unavailable. In the present study, we demonstrate how these new extensions to the EOM-CC method can be utilized to compute metal K pre-edge spectra and determine the orbital characteristics of MCl4 complexes.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"162 19\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0274777\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0274777","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
利用运动耦合簇方程(EOM-CC)方法获得了三维过渡金属四氯化物(MCl4, M = Ti, Fe, Co, Ni和Cu)的金属K前边缘光谱。这些光谱主要受到振荡强度的两个关键贡献——电偶极子和四极子跃迁矩的影响,这是由于过渡金属原子中3d和4p轨道的可能混合。EOM-CC单双方法结合了最近实现的一种形式,包括对振荡器强度的所有二阶贡献[即,超出了习惯的偶极子近似,Park等人,J. Chem。物理学报,155,094103(2021)]为计算激发能和振荡器强度提供了强大的工具。这种方法能够准确地解释实验光谱,并有助于在实验数据不可用时进行预测。在本研究中,我们展示了如何利用EOM-CC方法的这些新扩展来计算金属K前边缘光谱并确定MCl4配合物的轨道特征。
EOM-CCSD calculation of metal K pre-edge spectra: 3d transition metal tetrachlorides.
The metal K pre-edge spectra of 3d transition metal tetrachlorides (MCl4, M = Ti, Fe, Co, Ni, and Cu) are obtained using the equation of motion coupled cluster (EOM-CC) approach. These spectra are primarily influenced by two key contributions to the oscillator strength-the electric dipole and quadrupole transition moments-due to the possible mixing of 3d and 4p orbitals in transition metal atoms. The EOM-CC singles and doubles method incorporating a recently implemented formalism that includes all the second-order contributions to oscillator strength [i.e., beyond the customary dipole approximation, Park et al., J. Chem. Phys. 155, 094103 (2021)] provides a powerful tool for computing excitation energies and oscillator strengths. This approach enables accurate interpretation of experimental spectra and facilitates predictions when experimental data are unavailable. In the present study, we demonstrate how these new extensions to the EOM-CC method can be utilized to compute metal K pre-edge spectra and determine the orbital characteristics of MCl4 complexes.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.