Luuk Jacobs, Marco Piccirelli, Valery Vishnevskiy, Sebastian Kozerke
{"title":"FlowMRI-Net:一个可推广的自监督4D流MRI重建网络。","authors":"Luuk Jacobs, Marco Piccirelli, Valery Vishnevskiy, Sebastian Kozerke","doi":"10.1016/j.jocmr.2025.101913","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Image reconstruction from highly undersampled 4D flow MRI data can be very time consuming and may result in significant underestimation of velocities depending on regularization, thereby limiting the applicability of the method. The objective of the present work was to develop a generalizable self-supervised deep learning-based framework for fast and accurate reconstruction of highly undersampled 4D flow MRI and to demonstrate the utility of the framework for aortic and cerebrovascular applications.</p><p><strong>Methods: </strong>The proposed deep-learning-based framework, called FlowMRI-Net, employs physics-driven unrolled optimization using a complex-valued convolutional recurrent neural network and is trained in a self-supervised manner. The generalizability of the framework is evaluated using aortic and cerebrovascular 4D flow MRI acquisitions acquired on systems from two different vendors for various undersampling factors (R=8,16,24) and compared to compressed sensing (CS-LLR) reconstructions. Evaluation includes an ablation study and a qualitative and quantitative analysis of image and velocity magnitudes.</p><p><strong>Results: </strong>FlowMRI-Net outperforms CS-LLR for aortic 4D flow MRI reconstruction, resulting in significantly lower vectorial normalized root mean square error and mean directional errors for velocities in the thoracic aorta. Furthermore, the feasibility of FlowMRI-Net's generalizability is demonstrated for cerebrovascular 4D flow MRI reconstruction. Reconstruction times ranged from 3 to 7minutes on commodity CPU/GPU hardware.</p><p><strong>Conclusion: </strong>FlowMRI-Net enables fast and accurate reconstruction of highly undersampled aortic and cerebrovascular 4D flow MRI, with possible applications to other vascular territories.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":" ","pages":"101913"},"PeriodicalIF":4.2000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FlowMRI-Net: A Generalizable Self-Supervised 4D Flow MRI Reconstruction Network.\",\"authors\":\"Luuk Jacobs, Marco Piccirelli, Valery Vishnevskiy, Sebastian Kozerke\",\"doi\":\"10.1016/j.jocmr.2025.101913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Image reconstruction from highly undersampled 4D flow MRI data can be very time consuming and may result in significant underestimation of velocities depending on regularization, thereby limiting the applicability of the method. The objective of the present work was to develop a generalizable self-supervised deep learning-based framework for fast and accurate reconstruction of highly undersampled 4D flow MRI and to demonstrate the utility of the framework for aortic and cerebrovascular applications.</p><p><strong>Methods: </strong>The proposed deep-learning-based framework, called FlowMRI-Net, employs physics-driven unrolled optimization using a complex-valued convolutional recurrent neural network and is trained in a self-supervised manner. The generalizability of the framework is evaluated using aortic and cerebrovascular 4D flow MRI acquisitions acquired on systems from two different vendors for various undersampling factors (R=8,16,24) and compared to compressed sensing (CS-LLR) reconstructions. Evaluation includes an ablation study and a qualitative and quantitative analysis of image and velocity magnitudes.</p><p><strong>Results: </strong>FlowMRI-Net outperforms CS-LLR for aortic 4D flow MRI reconstruction, resulting in significantly lower vectorial normalized root mean square error and mean directional errors for velocities in the thoracic aorta. Furthermore, the feasibility of FlowMRI-Net's generalizability is demonstrated for cerebrovascular 4D flow MRI reconstruction. Reconstruction times ranged from 3 to 7minutes on commodity CPU/GPU hardware.</p><p><strong>Conclusion: </strong>FlowMRI-Net enables fast and accurate reconstruction of highly undersampled aortic and cerebrovascular 4D flow MRI, with possible applications to other vascular territories.</p>\",\"PeriodicalId\":15221,\"journal\":{\"name\":\"Journal of Cardiovascular Magnetic Resonance\",\"volume\":\" \",\"pages\":\"101913\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cardiovascular Magnetic Resonance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jocmr.2025.101913\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Magnetic Resonance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jocmr.2025.101913","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
FlowMRI-Net: A Generalizable Self-Supervised 4D Flow MRI Reconstruction Network.
Background: Image reconstruction from highly undersampled 4D flow MRI data can be very time consuming and may result in significant underestimation of velocities depending on regularization, thereby limiting the applicability of the method. The objective of the present work was to develop a generalizable self-supervised deep learning-based framework for fast and accurate reconstruction of highly undersampled 4D flow MRI and to demonstrate the utility of the framework for aortic and cerebrovascular applications.
Methods: The proposed deep-learning-based framework, called FlowMRI-Net, employs physics-driven unrolled optimization using a complex-valued convolutional recurrent neural network and is trained in a self-supervised manner. The generalizability of the framework is evaluated using aortic and cerebrovascular 4D flow MRI acquisitions acquired on systems from two different vendors for various undersampling factors (R=8,16,24) and compared to compressed sensing (CS-LLR) reconstructions. Evaluation includes an ablation study and a qualitative and quantitative analysis of image and velocity magnitudes.
Results: FlowMRI-Net outperforms CS-LLR for aortic 4D flow MRI reconstruction, resulting in significantly lower vectorial normalized root mean square error and mean directional errors for velocities in the thoracic aorta. Furthermore, the feasibility of FlowMRI-Net's generalizability is demonstrated for cerebrovascular 4D flow MRI reconstruction. Reconstruction times ranged from 3 to 7minutes on commodity CPU/GPU hardware.
Conclusion: FlowMRI-Net enables fast and accurate reconstruction of highly undersampled aortic and cerebrovascular 4D flow MRI, with possible applications to other vascular territories.
期刊介绍:
Journal of Cardiovascular Magnetic Resonance (JCMR) publishes high-quality articles on all aspects of basic, translational and clinical research on the design, development, manufacture, and evaluation of cardiovascular magnetic resonance (CMR) methods applied to the cardiovascular system. Topical areas include, but are not limited to:
New applications of magnetic resonance to improve the diagnostic strategies, risk stratification, characterization and management of diseases affecting the cardiovascular system.
New methods to enhance or accelerate image acquisition and data analysis.
Results of multicenter, or larger single-center studies that provide insight into the utility of CMR.
Basic biological perceptions derived by CMR methods.