通过机器学习算法,击掌模型作为工人最佳职业和个人功能的预测器。

IF 1.7 4区 心理学 Q2 PSYCHOLOGY, MULTIDISCIPLINARY
Alejandro Castro Solano, Maria Laura Lupano Perugini
{"title":"通过机器学习算法,击掌模型作为工人最佳职业和个人功能的预测器。","authors":"Alejandro Castro Solano, Maria Laura Lupano Perugini","doi":"10.1177/00332941251343544","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, the predictive power of positive personality traits from the High Five Model (HFM) for optimal personal and work functioning in employees was analyzed via machine learning algorithms. A total of 645 active workers participated (409 women and 236 men). Data were collected through the High Five Inventory (HFI), the Mental Health Continuum-SF (MHC-SF), the Symptoms Checklist-27 (SCL-27), the Argentine Work Engagement Scale (AWES), a job satisfaction survey, and a job performance survey. With respect to optimal personal functioning, all the HFM traits (except honesty) were strong predictors. For optimal work functioning, erudition and tenacity predicted high levels of job satisfaction, job performance, and work engagement. ML algorithms (SVM, random forest, KNN) predict personal functioning more effectively than work functioning.</p>","PeriodicalId":21149,"journal":{"name":"Psychological Reports","volume":" ","pages":"332941251343544"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The High Five Model as a Predictor of the Optimal Occupational and Personal Functioning of Workers Through Machine Learning Algorithms.\",\"authors\":\"Alejandro Castro Solano, Maria Laura Lupano Perugini\",\"doi\":\"10.1177/00332941251343544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, the predictive power of positive personality traits from the High Five Model (HFM) for optimal personal and work functioning in employees was analyzed via machine learning algorithms. A total of 645 active workers participated (409 women and 236 men). Data were collected through the High Five Inventory (HFI), the Mental Health Continuum-SF (MHC-SF), the Symptoms Checklist-27 (SCL-27), the Argentine Work Engagement Scale (AWES), a job satisfaction survey, and a job performance survey. With respect to optimal personal functioning, all the HFM traits (except honesty) were strong predictors. For optimal work functioning, erudition and tenacity predicted high levels of job satisfaction, job performance, and work engagement. ML algorithms (SVM, random forest, KNN) predict personal functioning more effectively than work functioning.</p>\",\"PeriodicalId\":21149,\"journal\":{\"name\":\"Psychological Reports\",\"volume\":\" \",\"pages\":\"332941251343544\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological Reports\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/00332941251343544\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological Reports","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00332941251343544","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,通过机器学习算法分析了来自High Five模型(HFM)的积极人格特征对员工最佳个人和工作功能的预测能力。共有645名在职工人参加了调查(女性409人,男性236人)。通过击掌量表(HFI)、心理健康连续量表(MHC-SF)、症状清单-27 (SCL-27)、阿根廷工作投入量表(AWES)、工作满意度调查和工作绩效调查收集数据。关于最佳个人功能,所有HFM特征(诚实除外)都是强预测因子。对于最佳的工作功能,博学和坚韧预示着高水平的工作满意度、工作绩效和工作投入。机器学习算法(SVM,随机森林,KNN)比工作功能更有效地预测个人功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The High Five Model as a Predictor of the Optimal Occupational and Personal Functioning of Workers Through Machine Learning Algorithms.

In this study, the predictive power of positive personality traits from the High Five Model (HFM) for optimal personal and work functioning in employees was analyzed via machine learning algorithms. A total of 645 active workers participated (409 women and 236 men). Data were collected through the High Five Inventory (HFI), the Mental Health Continuum-SF (MHC-SF), the Symptoms Checklist-27 (SCL-27), the Argentine Work Engagement Scale (AWES), a job satisfaction survey, and a job performance survey. With respect to optimal personal functioning, all the HFM traits (except honesty) were strong predictors. For optimal work functioning, erudition and tenacity predicted high levels of job satisfaction, job performance, and work engagement. ML algorithms (SVM, random forest, KNN) predict personal functioning more effectively than work functioning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Psychological Reports
Psychological Reports PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
5.10
自引率
4.30%
发文量
171
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信