水滑石预处理与超滤联合去除污染水中有机物和氨氮。

IF 2 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Environmental Technology Pub Date : 2025-08-01 Epub Date: 2025-05-18 DOI:10.1080/09593330.2025.2499753
Fuchen Ban, Yuxin Wang, Shiyuan Yang
{"title":"水滑石预处理与超滤联合去除污染水中有机物和氨氮。","authors":"Fuchen Ban, Yuxin Wang, Shiyuan Yang","doi":"10.1080/09593330.2025.2499753","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, the combined process of hydrotalcite and ultrafiltration was investigated for the treatment of micro-polluted water samples. The study examined the impact of the combined process on the elimination of Total Organic Carbon (TOC) and ammonia nitrogen, varying the dosage of hydrotalcite, the duration of adsorption, and the volume of ultrafiltration backwash water. The experimental outcomes were subjected to analysis. Utilizing response surface methodology, the conditions for the removal of ammonia nitrogen were optimized through single-factor experiments. The results indicated that the interaction of the three factors had a significant impact on the removal of ammonia nitrogen, with the order of significance being: hydrotalcite dosage & adsorption time > adsorption time & backwash water volume > hydrotalcite dosage & backwash water volume. Upon administering an hydrotalcite dosage of 298.25 mg/L, maintaining an adsorption time of 50.49 minutes, and utilizing a backwash water volume of 153.42 L/h, the maximum removal rate of ammonia nitrogen achieved was 73.52%. Through the regeneration performance experiment, it is found that hydrotalcite has a good retention rate and can be reused. And under the prevailing conditions, the combined treatment process achieved the following pollutant removal rates: turbidity reduction of 97.60%, ammonia nitrogen removal of 71.25%, Cr (VI) elimination of 93.41%, and Mn (II) removal amounting to 33.33%. This study offers theoretical support for the future application of ultrafiltration membranes.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"4171-4181"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Removal of organic matter and ammonia nitrogen from contaminated water by combining hydrotalcites pretreatment and ultrafiltration.\",\"authors\":\"Fuchen Ban, Yuxin Wang, Shiyuan Yang\",\"doi\":\"10.1080/09593330.2025.2499753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, the combined process of hydrotalcite and ultrafiltration was investigated for the treatment of micro-polluted water samples. The study examined the impact of the combined process on the elimination of Total Organic Carbon (TOC) and ammonia nitrogen, varying the dosage of hydrotalcite, the duration of adsorption, and the volume of ultrafiltration backwash water. The experimental outcomes were subjected to analysis. Utilizing response surface methodology, the conditions for the removal of ammonia nitrogen were optimized through single-factor experiments. The results indicated that the interaction of the three factors had a significant impact on the removal of ammonia nitrogen, with the order of significance being: hydrotalcite dosage & adsorption time > adsorption time & backwash water volume > hydrotalcite dosage & backwash water volume. Upon administering an hydrotalcite dosage of 298.25 mg/L, maintaining an adsorption time of 50.49 minutes, and utilizing a backwash water volume of 153.42 L/h, the maximum removal rate of ammonia nitrogen achieved was 73.52%. Through the regeneration performance experiment, it is found that hydrotalcite has a good retention rate and can be reused. And under the prevailing conditions, the combined treatment process achieved the following pollutant removal rates: turbidity reduction of 97.60%, ammonia nitrogen removal of 71.25%, Cr (VI) elimination of 93.41%, and Mn (II) removal amounting to 33.33%. This study offers theoretical support for the future application of ultrafiltration membranes.</p>\",\"PeriodicalId\":12009,\"journal\":{\"name\":\"Environmental Technology\",\"volume\":\" \",\"pages\":\"4171-4181\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/09593330.2025.2499753\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2025.2499753","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

研究了水滑石与超滤联合处理微污染水样的工艺。研究了不同水滑石投加量、吸附时间和超滤反冲洗水量对复合工艺去除总有机碳(TOC)和氨氮的影响。对实验结果进行分析。利用响应面法,通过单因素实验对氨氮的去除条件进行优化。结果表明,3个因素的相互作用对氨氮的去除有显著影响,影响程度的大小依次为:水滑石用量及吸附时间>吸附时间及反冲洗水量>水滑石用量及反冲洗水量。在水滑石投加量为298.25 mg/L、吸附时间为50.49 min、反冲洗水量为153.42 L/h的条件下,氨氮的最大去除率为73.52%。通过再生性能实验,发现水滑石具有良好的保留率,可以重复使用。在一般条件下,联合处理工艺的污染物去除率为:浊度降低97.60%,氨氮去除率71.25%,Cr (VI)去除率93.41%,Mn (II)去除率33.33%。该研究为超滤膜的未来应用提供了理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Removal of organic matter and ammonia nitrogen from contaminated water by combining hydrotalcites pretreatment and ultrafiltration.

In this study, the combined process of hydrotalcite and ultrafiltration was investigated for the treatment of micro-polluted water samples. The study examined the impact of the combined process on the elimination of Total Organic Carbon (TOC) and ammonia nitrogen, varying the dosage of hydrotalcite, the duration of adsorption, and the volume of ultrafiltration backwash water. The experimental outcomes were subjected to analysis. Utilizing response surface methodology, the conditions for the removal of ammonia nitrogen were optimized through single-factor experiments. The results indicated that the interaction of the three factors had a significant impact on the removal of ammonia nitrogen, with the order of significance being: hydrotalcite dosage & adsorption time > adsorption time & backwash water volume > hydrotalcite dosage & backwash water volume. Upon administering an hydrotalcite dosage of 298.25 mg/L, maintaining an adsorption time of 50.49 minutes, and utilizing a backwash water volume of 153.42 L/h, the maximum removal rate of ammonia nitrogen achieved was 73.52%. Through the regeneration performance experiment, it is found that hydrotalcite has a good retention rate and can be reused. And under the prevailing conditions, the combined treatment process achieved the following pollutant removal rates: turbidity reduction of 97.60%, ammonia nitrogen removal of 71.25%, Cr (VI) elimination of 93.41%, and Mn (II) removal amounting to 33.33%. This study offers theoretical support for the future application of ultrafiltration membranes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Technology
Environmental Technology 环境科学-环境科学
CiteScore
6.50
自引率
3.60%
发文量
0
审稿时长
4 months
期刊介绍: Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies. Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months. Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信