Baoxi Zhu, Hong Wan, Zichen Ling, Han Jiang, Jing Pei
{"title":"机器学习和单细胞分析揭示了TNBC免疫微环境中CD300LG的独特特征:实验验证。","authors":"Baoxi Zhu, Hong Wan, Zichen Ling, Han Jiang, Jing Pei","doi":"10.1007/s10238-025-01690-3","DOIUrl":null,"url":null,"abstract":"<p><p>Investigating the essential function of CD300LG within the tumor microenvironment in triple-negative breast cancer (TNBC). Transcriptomic and single-cell data from TNBC were systematically collected and integrated. Four machine learning algorithms were employed to identify distinct target genes in TNBC patients. Specifically, CIBERSORT and ssGSEA algorithms were utilized to elucidate immune infiltration patterns, whereas TIDE and TCGA algorithms predicted immune-related outcomes. Moreover, single-cell sequencing data were analyzed to investigate the function of CD300LG-positive cells within the tumor microenvironment. Finally, immunofluorescence staining confirmed the significance of CD300LG in tumor phenotyping. After machine learning screening and independent dataset validation, CD300LG was identified as a unique prognostic biomarker for triple-negative breast cancer. Enrichment analysis revealed that CD300LG expression is strongly linked to immune infiltration and inflammation-related pathways, especially those associated with the cell cycle. The presence of CD8<sup>+</sup> T cells and M1-type macrophages was elevated in the CD300LG higher group, whereas the abundance of M2-type macrophage infiltration showed a significant decrease. Immunotherapy prediction models indicated that individuals with low CD300LG expression exhibited better responses to PD-1 therapy. Additionally, single-cell RNA sequencing and immunofluorescence analyses uncovered a robust association between CD300LG and genes involved in tumor invasion. CD300LG plays a pivotal role in the tumor microenvironment of TNBC and represents a promising therapeutic target.</p>","PeriodicalId":10337,"journal":{"name":"Clinical and Experimental Medicine","volume":"25 1","pages":"167"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12085369/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning and single-cell analysis uncover distinctive characteristics of CD300LG within the TNBC immune microenvironment: experimental validation.\",\"authors\":\"Baoxi Zhu, Hong Wan, Zichen Ling, Han Jiang, Jing Pei\",\"doi\":\"10.1007/s10238-025-01690-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Investigating the essential function of CD300LG within the tumor microenvironment in triple-negative breast cancer (TNBC). Transcriptomic and single-cell data from TNBC were systematically collected and integrated. Four machine learning algorithms were employed to identify distinct target genes in TNBC patients. Specifically, CIBERSORT and ssGSEA algorithms were utilized to elucidate immune infiltration patterns, whereas TIDE and TCGA algorithms predicted immune-related outcomes. Moreover, single-cell sequencing data were analyzed to investigate the function of CD300LG-positive cells within the tumor microenvironment. Finally, immunofluorescence staining confirmed the significance of CD300LG in tumor phenotyping. After machine learning screening and independent dataset validation, CD300LG was identified as a unique prognostic biomarker for triple-negative breast cancer. Enrichment analysis revealed that CD300LG expression is strongly linked to immune infiltration and inflammation-related pathways, especially those associated with the cell cycle. The presence of CD8<sup>+</sup> T cells and M1-type macrophages was elevated in the CD300LG higher group, whereas the abundance of M2-type macrophage infiltration showed a significant decrease. Immunotherapy prediction models indicated that individuals with low CD300LG expression exhibited better responses to PD-1 therapy. Additionally, single-cell RNA sequencing and immunofluorescence analyses uncovered a robust association between CD300LG and genes involved in tumor invasion. CD300LG plays a pivotal role in the tumor microenvironment of TNBC and represents a promising therapeutic target.</p>\",\"PeriodicalId\":10337,\"journal\":{\"name\":\"Clinical and Experimental Medicine\",\"volume\":\"25 1\",\"pages\":\"167\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12085369/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Experimental Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10238-025-01690-3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10238-025-01690-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Machine learning and single-cell analysis uncover distinctive characteristics of CD300LG within the TNBC immune microenvironment: experimental validation.
Investigating the essential function of CD300LG within the tumor microenvironment in triple-negative breast cancer (TNBC). Transcriptomic and single-cell data from TNBC were systematically collected and integrated. Four machine learning algorithms were employed to identify distinct target genes in TNBC patients. Specifically, CIBERSORT and ssGSEA algorithms were utilized to elucidate immune infiltration patterns, whereas TIDE and TCGA algorithms predicted immune-related outcomes. Moreover, single-cell sequencing data were analyzed to investigate the function of CD300LG-positive cells within the tumor microenvironment. Finally, immunofluorescence staining confirmed the significance of CD300LG in tumor phenotyping. After machine learning screening and independent dataset validation, CD300LG was identified as a unique prognostic biomarker for triple-negative breast cancer. Enrichment analysis revealed that CD300LG expression is strongly linked to immune infiltration and inflammation-related pathways, especially those associated with the cell cycle. The presence of CD8+ T cells and M1-type macrophages was elevated in the CD300LG higher group, whereas the abundance of M2-type macrophage infiltration showed a significant decrease. Immunotherapy prediction models indicated that individuals with low CD300LG expression exhibited better responses to PD-1 therapy. Additionally, single-cell RNA sequencing and immunofluorescence analyses uncovered a robust association between CD300LG and genes involved in tumor invasion. CD300LG plays a pivotal role in the tumor microenvironment of TNBC and represents a promising therapeutic target.
期刊介绍:
Clinical and Experimental Medicine (CEM) is a multidisciplinary journal that aims to be a forum of scientific excellence and information exchange in relation to the basic and clinical features of the following fields: hematology, onco-hematology, oncology, virology, immunology, and rheumatology. The journal publishes reviews and editorials, experimental and preclinical studies, translational research, prospectively designed clinical trials, and epidemiological studies. Papers containing new clinical or experimental data that are likely to contribute to changes in clinical practice or the way in which a disease is thought about will be given priority due to their immediate importance. Case reports will be accepted on an exceptional basis only, and their submission is discouraged. The major criteria for publication are clarity, scientific soundness, and advances in knowledge. In compliance with the overwhelmingly prevailing request by the international scientific community, and with respect for eco-compatibility issues, CEM is now published exclusively online.