Sorour Nemati, Michelle Kilcoyne, Dimitrios Zeugolis, Siobhan S McMahon
{"title":"大分子添加剂对星形胶质细胞细胞外基质沉积的影响。","authors":"Sorour Nemati, Michelle Kilcoyne, Dimitrios Zeugolis, Siobhan S McMahon","doi":"10.1007/s00441-025-03980-4","DOIUrl":null,"url":null,"abstract":"<p><p>Macromolecular crowding (MMC) is a biophysical phenomenon that has proven effective in enhancing extracellular matrix (ECM) deposition in vitro. However, MMCs potential in neuroglial cell cultures remains underexplored. This study investigates the effects of three distinct MMC agents [carrageenan (CR), dextran sulphate (DxS) and FicollⓇ cocktail (FC)] on ECM deposition and cell behaviour of Neu7 and primary astrocytes. While the viability and metabolic activity of Neu7 astrocytes were unaffected by any of the crowding agents, primary astrocytes exhibited a significant decrease in viability and metabolic activity in the presence of CR and DxS. The addition of CR, DxS, and FC resulted in a significant increase in deposition of fibronectin, collagen IV, collagen I, GFAP and CS56 in Neu7 astrocytes. In primary astrocytes, FC significantly enhanced the expression of astrocytic markers and increased the deposition of ECM proteins, including fibronectin and collagen IV. This study highlights the advantages of using FC as a MMC agent for enhancing ECM deposition in astrocytes. The method demonstrates potential for developing fast and more physiologically relevant in vitro models and improving drug screening processes for future studies. The observed benefits underscore the utility of FC in creating advanced cellular models that better mimic the native neural environment.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of macromolecular crowders on deposition of extracellular matrix in astrocyte cultures.\",\"authors\":\"Sorour Nemati, Michelle Kilcoyne, Dimitrios Zeugolis, Siobhan S McMahon\",\"doi\":\"10.1007/s00441-025-03980-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Macromolecular crowding (MMC) is a biophysical phenomenon that has proven effective in enhancing extracellular matrix (ECM) deposition in vitro. However, MMCs potential in neuroglial cell cultures remains underexplored. This study investigates the effects of three distinct MMC agents [carrageenan (CR), dextran sulphate (DxS) and FicollⓇ cocktail (FC)] on ECM deposition and cell behaviour of Neu7 and primary astrocytes. While the viability and metabolic activity of Neu7 astrocytes were unaffected by any of the crowding agents, primary astrocytes exhibited a significant decrease in viability and metabolic activity in the presence of CR and DxS. The addition of CR, DxS, and FC resulted in a significant increase in deposition of fibronectin, collagen IV, collagen I, GFAP and CS56 in Neu7 astrocytes. In primary astrocytes, FC significantly enhanced the expression of astrocytic markers and increased the deposition of ECM proteins, including fibronectin and collagen IV. This study highlights the advantages of using FC as a MMC agent for enhancing ECM deposition in astrocytes. The method demonstrates potential for developing fast and more physiologically relevant in vitro models and improving drug screening processes for future studies. The observed benefits underscore the utility of FC in creating advanced cellular models that better mimic the native neural environment.</p>\",\"PeriodicalId\":9712,\"journal\":{\"name\":\"Cell and Tissue Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell and Tissue Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00441-025-03980-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00441-025-03980-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
The effect of macromolecular crowders on deposition of extracellular matrix in astrocyte cultures.
Macromolecular crowding (MMC) is a biophysical phenomenon that has proven effective in enhancing extracellular matrix (ECM) deposition in vitro. However, MMCs potential in neuroglial cell cultures remains underexplored. This study investigates the effects of three distinct MMC agents [carrageenan (CR), dextran sulphate (DxS) and FicollⓇ cocktail (FC)] on ECM deposition and cell behaviour of Neu7 and primary astrocytes. While the viability and metabolic activity of Neu7 astrocytes were unaffected by any of the crowding agents, primary astrocytes exhibited a significant decrease in viability and metabolic activity in the presence of CR and DxS. The addition of CR, DxS, and FC resulted in a significant increase in deposition of fibronectin, collagen IV, collagen I, GFAP and CS56 in Neu7 astrocytes. In primary astrocytes, FC significantly enhanced the expression of astrocytic markers and increased the deposition of ECM proteins, including fibronectin and collagen IV. This study highlights the advantages of using FC as a MMC agent for enhancing ECM deposition in astrocytes. The method demonstrates potential for developing fast and more physiologically relevant in vitro models and improving drug screening processes for future studies. The observed benefits underscore the utility of FC in creating advanced cellular models that better mimic the native neural environment.
期刊介绍:
The journal publishes regular articles and reviews in the areas of molecular, cell, and supracellular biology. In particular, the journal intends to provide a forum for publishing data that analyze the supracellular, integrative actions of gene products and their impact on the formation of tissue structure and function. Submission of papers with an emphasis on structure-function relationships as revealed by recombinant molecular technologies is especially encouraged. Areas of research with a long-standing tradition of publishing in Cell & Tissue Research include:
- neurobiology
- neuroendocrinology
- endocrinology
- reproductive biology
- skeletal and immune systems
- development
- stem cells
- muscle biology.