恒温物种体温的分子起源。

IF 2.2 3区 医学 Q3 PHYSIOLOGY
Gerhard M Artmann, Oliver H Weiergräber, Samar Damiati, Ipek Seda Firat, Aysegül Temiz Artmann
{"title":"恒温物种体温的分子起源。","authors":"Gerhard M Artmann, Oliver H Weiergräber, Samar Damiati, Ipek Seda Firat, Aysegül Temiz Artmann","doi":"10.1152/ajpregu.00236.2024","DOIUrl":null,"url":null,"abstract":"<p><p>We propose the Interfacial Water Quantum-transition model (IWQ model) as a novel paradigm explaining temperature-dependent structural and functional transitions (discontinuities) observed in proteins. The central postulate states that experimentally measured critical temperatures, T<sub>C</sub>, are related to physical reference temperatures, T<sub>W</sub>, defined by rotational quantum transitions of temporarily free water molecules in the protein-water interface. Applicability of this concept is demonstrated using transitions observed in two disparate model systems, viz., hemoglobin and thermosensitive TRP channels. We propose that the same mechanism underlies the definition of basal body temperatures in homeotherms, the reference temperature for humans being T<sub>W</sub>=36.32°C. Specifically, we demonstrate that the body temperatures of both human and chicken (representing the two classes of homeothermic vertebrates) not only coincide with quantum-transition reference temperatures but are also related to pronounced transitions in hemoglobin oxygen saturation. This suggests that the evolution of body temperatures in different homeothermic species might involve an interplay between critical parameters of oxygen supply on the one hand and quantum-physical rotational transition temperatures of water on the other. Casting the IWQ-model concept into a concise formula: Proteins sense and water sets critical physiological temperatures.</p>","PeriodicalId":7630,"journal":{"name":"American journal of physiology. Regulatory, integrative and comparative physiology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The molecular origin of body temperature in homeothermic species.\",\"authors\":\"Gerhard M Artmann, Oliver H Weiergräber, Samar Damiati, Ipek Seda Firat, Aysegül Temiz Artmann\",\"doi\":\"10.1152/ajpregu.00236.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose the Interfacial Water Quantum-transition model (IWQ model) as a novel paradigm explaining temperature-dependent structural and functional transitions (discontinuities) observed in proteins. The central postulate states that experimentally measured critical temperatures, T<sub>C</sub>, are related to physical reference temperatures, T<sub>W</sub>, defined by rotational quantum transitions of temporarily free water molecules in the protein-water interface. Applicability of this concept is demonstrated using transitions observed in two disparate model systems, viz., hemoglobin and thermosensitive TRP channels. We propose that the same mechanism underlies the definition of basal body temperatures in homeotherms, the reference temperature for humans being T<sub>W</sub>=36.32°C. Specifically, we demonstrate that the body temperatures of both human and chicken (representing the two classes of homeothermic vertebrates) not only coincide with quantum-transition reference temperatures but are also related to pronounced transitions in hemoglobin oxygen saturation. This suggests that the evolution of body temperatures in different homeothermic species might involve an interplay between critical parameters of oxygen supply on the one hand and quantum-physical rotational transition temperatures of water on the other. Casting the IWQ-model concept into a concise formula: Proteins sense and water sets critical physiological temperatures.</p>\",\"PeriodicalId\":7630,\"journal\":{\"name\":\"American journal of physiology. Regulatory, integrative and comparative physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Regulatory, integrative and comparative physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpregu.00236.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Regulatory, integrative and comparative physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpregu.00236.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出界面水量子跃迁模型(IWQ模型)作为解释蛋白质中观察到的温度依赖的结构和功能跃迁(不连续)的新范式。实验测量的临界温度TC与物理参考温度TW有关,参考温度是由蛋白质-水界面中暂时自由的水分子的旋转量子跃迁定义的。这一概念的适用性是通过在两个不同的模型系统中观察到的转变来证明的,即血红蛋白和热敏TRP通道。我们认为,恒温中基础体温的定义也是基于同样的机制,人类的参考温度为TW=36.32°C。具体来说,我们证明了人类和鸡(代表两类恒温脊椎动物)的体温不仅与量子跃迁参考温度一致,而且还与血红蛋白氧饱和度的显著转变有关。这表明,不同恒温物种的体温进化可能涉及氧气供应的关键参数和水的量子物理旋转转变温度之间的相互作用。将iwq模型概念转化为一个简洁的公式:蛋白质感知和水设定了关键的生理温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The molecular origin of body temperature in homeothermic species.

We propose the Interfacial Water Quantum-transition model (IWQ model) as a novel paradigm explaining temperature-dependent structural and functional transitions (discontinuities) observed in proteins. The central postulate states that experimentally measured critical temperatures, TC, are related to physical reference temperatures, TW, defined by rotational quantum transitions of temporarily free water molecules in the protein-water interface. Applicability of this concept is demonstrated using transitions observed in two disparate model systems, viz., hemoglobin and thermosensitive TRP channels. We propose that the same mechanism underlies the definition of basal body temperatures in homeotherms, the reference temperature for humans being TW=36.32°C. Specifically, we demonstrate that the body temperatures of both human and chicken (representing the two classes of homeothermic vertebrates) not only coincide with quantum-transition reference temperatures but are also related to pronounced transitions in hemoglobin oxygen saturation. This suggests that the evolution of body temperatures in different homeothermic species might involve an interplay between critical parameters of oxygen supply on the one hand and quantum-physical rotational transition temperatures of water on the other. Casting the IWQ-model concept into a concise formula: Proteins sense and water sets critical physiological temperatures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
3.60%
发文量
145
审稿时长
2 months
期刊介绍: The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology publishes original investigations that illuminate normal or abnormal regulation and integration of physiological mechanisms at all levels of biological organization, ranging from molecules to humans, including clinical investigations. Major areas of emphasis include regulation in genetically modified animals; model organisms; development and tissue plasticity; neurohumoral control of circulation and hypertension; local control of circulation; cardiac and renal integration; thirst and volume, electrolyte homeostasis; glucose homeostasis and energy balance; appetite and obesity; inflammation and cytokines; integrative physiology of pregnancy-parturition-lactation; and thermoregulation and adaptations to exercise and environmental stress.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信