红原鹫驯化性的选择概括了与驯化相关的脑组成相关的遗传位点。

IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Carlos Guerrero-Bosagna, Fábio Pértille, Zahra Moradinour, Rebecca Katajama, Maria Luisa Martin Cerezo, Rie Henriksen, Per Jensen, Dominic Wright
{"title":"红原鹫驯化性的选择概括了与驯化相关的脑组成相关的遗传位点。","authors":"Carlos Guerrero-Bosagna, Fábio Pértille, Zahra Moradinour, Rebecca Katajama, Maria Luisa Martin Cerezo, Rie Henriksen, Per Jensen, Dominic Wright","doi":"10.1111/mec.17788","DOIUrl":null,"url":null,"abstract":"<p><p>Domestication involves huge phenotypic shifts via strong directional selection. The resulting changes, often termed the Domestication Syndrome, typically encompass numerous traits; however, the most universal of these are changes in reduced fear of humans (tameness) and brain composition. To assess how early domestication selection may have focused on tameness and its interaction with brain composition, a Red Junglefowl (Gallus gallus) population (the wild progenitor of the domestic chicken) was used to create two lines bidirectionally selected for fear of humans over eight generations of selection. These selection lines were then used to make an intercross population. Using a combination of genome-wide mapping in the intercross and between-line analysis of the selection lines, we show that the genetic loci for tameness co-localise with genetic loci for brain composition and anxiety behaviour. Furthermore, the detected loci for brain composition also co-localise with brain composition loci identified in a separate wild × domestic intercross. These results indicate that tameness and brain composition are either pleiotropic or genetically linked, and that tameness selection appears to recapitulate the same loci that have been selected by domestication itself. Therefore, selection for increased tameness could be the initial selection pressure driving the core of the domestication syndrome.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17788"},"PeriodicalIF":4.5000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selection for Tameness in Red Junglefowl Recapitulates Genetic Loci Associated With Domestication-Related Brain Composition.\",\"authors\":\"Carlos Guerrero-Bosagna, Fábio Pértille, Zahra Moradinour, Rebecca Katajama, Maria Luisa Martin Cerezo, Rie Henriksen, Per Jensen, Dominic Wright\",\"doi\":\"10.1111/mec.17788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Domestication involves huge phenotypic shifts via strong directional selection. The resulting changes, often termed the Domestication Syndrome, typically encompass numerous traits; however, the most universal of these are changes in reduced fear of humans (tameness) and brain composition. To assess how early domestication selection may have focused on tameness and its interaction with brain composition, a Red Junglefowl (Gallus gallus) population (the wild progenitor of the domestic chicken) was used to create two lines bidirectionally selected for fear of humans over eight generations of selection. These selection lines were then used to make an intercross population. Using a combination of genome-wide mapping in the intercross and between-line analysis of the selection lines, we show that the genetic loci for tameness co-localise with genetic loci for brain composition and anxiety behaviour. Furthermore, the detected loci for brain composition also co-localise with brain composition loci identified in a separate wild × domestic intercross. These results indicate that tameness and brain composition are either pleiotropic or genetically linked, and that tameness selection appears to recapitulate the same loci that have been selected by domestication itself. Therefore, selection for increased tameness could be the initial selection pressure driving the core of the domestication syndrome.</p>\",\"PeriodicalId\":210,\"journal\":{\"name\":\"Molecular Ecology\",\"volume\":\" \",\"pages\":\"e17788\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/mec.17788\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17788","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

驯化通过强烈的方向选择涉及巨大的表型变化。由此产生的变化,通常被称为驯化综合征,通常包含许多特征;然而,这些变化中最普遍的是对人类的恐惧减少(驯服)和大脑组成的变化。为了评估早期驯化选择如何将重点放在驯化及其与大脑组成的相互作用上,研究人员利用红原鸡(Gallus Gallus)种群(家鸡的野生祖先)在8代的选择中创造了两条双向选择线,以避免对人类的恐惧。然后用这些选系组成一个杂交群体。通过对选择系进行杂交和系间分析的全基因组定位,我们发现驯化性的遗传位点与大脑组成和焦虑行为的遗传位点共定位。此外,检测到的脑成分位点也与在一个单独的野生×家养杂交中鉴定到的脑成分位点共定位。这些结果表明,驯化和大脑组成要么是多效性的,要么是遗传相关的,驯化选择似乎概括了驯化本身选择的相同位点。因此,增加驯化的选择可能是驱动驯化综合征核心的初始选择压力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Selection for Tameness in Red Junglefowl Recapitulates Genetic Loci Associated With Domestication-Related Brain Composition.

Domestication involves huge phenotypic shifts via strong directional selection. The resulting changes, often termed the Domestication Syndrome, typically encompass numerous traits; however, the most universal of these are changes in reduced fear of humans (tameness) and brain composition. To assess how early domestication selection may have focused on tameness and its interaction with brain composition, a Red Junglefowl (Gallus gallus) population (the wild progenitor of the domestic chicken) was used to create two lines bidirectionally selected for fear of humans over eight generations of selection. These selection lines were then used to make an intercross population. Using a combination of genome-wide mapping in the intercross and between-line analysis of the selection lines, we show that the genetic loci for tameness co-localise with genetic loci for brain composition and anxiety behaviour. Furthermore, the detected loci for brain composition also co-localise with brain composition loci identified in a separate wild × domestic intercross. These results indicate that tameness and brain composition are either pleiotropic or genetically linked, and that tameness selection appears to recapitulate the same loci that have been selected by domestication itself. Therefore, selection for increased tameness could be the initial selection pressure driving the core of the domestication syndrome.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Ecology
Molecular Ecology 生物-进化生物学
CiteScore
8.40
自引率
10.20%
发文量
472
审稿时长
1 months
期刊介绍: Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include: * population structure and phylogeography * reproductive strategies * relatedness and kin selection * sex allocation * population genetic theory * analytical methods development * conservation genetics * speciation genetics * microbial biodiversity * evolutionary dynamics of QTLs * ecological interactions * molecular adaptation and environmental genomics * impact of genetically modified organisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信