聚焦超声对超弹性介质中剪切波产生的影响。

IF 3 3区 医学 Q2 BIOPHYSICS
Aniket Sabale, Mohd Suhail Rizvi, Viswanath Chinthapenta, Avinash Eranki
{"title":"聚焦超声对超弹性介质中剪切波产生的影响。","authors":"Aniket Sabale, Mohd Suhail Rizvi, Viswanath Chinthapenta, Avinash Eranki","doi":"10.1007/s10237-025-01967-2","DOIUrl":null,"url":null,"abstract":"<p><p>Focused ultrasound (FUS) is an emerging noninvasive modality for treating various medical conditions. It encompasses both therapeutic and diagnostic applications, utilizing ultrasound waves at different intensities. In diagnostic modalities, ultrasound energy is deposited at the focus to generate acoustic radiation force (ARF), resulting in the generation of shear stress and waves, which are utilized in elastography to evaluate the mechanical properties of tissue. However, therapeutic modalities utilizing higher intensities may lead to elevated shear stress levels. The shear stress induced in the focal region during FUS procedures can potentially affect biological processes, such as cell membrane permeability and gene regulation. To better understand the mechanical stress generated during FUS procedures, we developed a finite element model (FEM) to simulate sonication using a single-element FUS transducer. We modeled soft tissue using a neo-Hookean hyperelastic constitutive behavior, offering a more realistic representation of tissue behavior compared to the linear elasticity assumptions commonly employed in ultrasound-based elastography techniques. Operational parameters were varied to simulate different acoustic powers of the transducer by applying mechanical surface pressure at various operating frequencies. The model depicted FUS wave propagation with amplified surface pressure at the focus, generating relevant focal pressures consistent with clinical setups. The focal beam size within the soft tissue material was characterized and exhibited dependency on the operating frequency of the transducer. As the FUS wave converged at the focus, an ARF was exerted, resulting in displacement and induced shear stress around the focal region, which were quantified. The displacement and shear stress that were analyzed were dependent on the applied transducer surface pressure. These findings deepen the understanding of the mechanics of low-intensity FUS and provide valuable insights into its shear-related effects due to displacement and deformation of the media.</p>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of focused ultrasound on shearwave production in a hyperelastic media.\",\"authors\":\"Aniket Sabale, Mohd Suhail Rizvi, Viswanath Chinthapenta, Avinash Eranki\",\"doi\":\"10.1007/s10237-025-01967-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Focused ultrasound (FUS) is an emerging noninvasive modality for treating various medical conditions. It encompasses both therapeutic and diagnostic applications, utilizing ultrasound waves at different intensities. In diagnostic modalities, ultrasound energy is deposited at the focus to generate acoustic radiation force (ARF), resulting in the generation of shear stress and waves, which are utilized in elastography to evaluate the mechanical properties of tissue. However, therapeutic modalities utilizing higher intensities may lead to elevated shear stress levels. The shear stress induced in the focal region during FUS procedures can potentially affect biological processes, such as cell membrane permeability and gene regulation. To better understand the mechanical stress generated during FUS procedures, we developed a finite element model (FEM) to simulate sonication using a single-element FUS transducer. We modeled soft tissue using a neo-Hookean hyperelastic constitutive behavior, offering a more realistic representation of tissue behavior compared to the linear elasticity assumptions commonly employed in ultrasound-based elastography techniques. Operational parameters were varied to simulate different acoustic powers of the transducer by applying mechanical surface pressure at various operating frequencies. The model depicted FUS wave propagation with amplified surface pressure at the focus, generating relevant focal pressures consistent with clinical setups. The focal beam size within the soft tissue material was characterized and exhibited dependency on the operating frequency of the transducer. As the FUS wave converged at the focus, an ARF was exerted, resulting in displacement and induced shear stress around the focal region, which were quantified. The displacement and shear stress that were analyzed were dependent on the applied transducer surface pressure. These findings deepen the understanding of the mechanics of low-intensity FUS and provide valuable insights into its shear-related effects due to displacement and deformation of the media.</p>\",\"PeriodicalId\":489,\"journal\":{\"name\":\"Biomechanics and Modeling in Mechanobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomechanics and Modeling in Mechanobiology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10237-025-01967-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10237-025-01967-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

聚焦超声(FUS)是一种新兴的无创治疗方法,可用于治疗各种疾病。它包括治疗和诊断应用,利用不同强度的超声波。在诊断模式中,超声能量沉积在焦点处产生声辐射力(ARF),导致剪切应力和波的产生,这些剪切应力和波用于弹性成像来评估组织的力学性能。然而,使用更高强度的治疗方式可能导致剪应力水平升高。在FUS手术过程中,在病灶区域诱导的剪切应力可能潜在地影响生物过程,如细胞膜通透性和基因调控。为了更好地理解在FUS过程中产生的机械应力,我们开发了一个有限元模型(FEM)来模拟使用单元件FUS换能器的超声。我们使用新hookean超弹性本构行为建模软组织,与超声弹性成像技术中常用的线性弹性假设相比,提供了更真实的组织行为表示。通过改变工作参数,在不同的工作频率下施加机械表面压力来模拟换能器的不同声功率。该模型描述了FUS波在病灶处的传播与放大的表面压力,产生与临床设置一致的相关病灶压力。软组织材料内的聚焦光束大小与换能器的工作频率有关。当FUS波在焦点处收敛时,施加ARF,在焦点周围产生位移和诱导剪切应力,并将其量化。所分析的位移和剪应力取决于所施加的传感器表面压力。这些发现加深了对低强度FUS力学的理解,并为其由于介质位移和变形而产生的剪切相关效应提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of focused ultrasound on shearwave production in a hyperelastic media.

Focused ultrasound (FUS) is an emerging noninvasive modality for treating various medical conditions. It encompasses both therapeutic and diagnostic applications, utilizing ultrasound waves at different intensities. In diagnostic modalities, ultrasound energy is deposited at the focus to generate acoustic radiation force (ARF), resulting in the generation of shear stress and waves, which are utilized in elastography to evaluate the mechanical properties of tissue. However, therapeutic modalities utilizing higher intensities may lead to elevated shear stress levels. The shear stress induced in the focal region during FUS procedures can potentially affect biological processes, such as cell membrane permeability and gene regulation. To better understand the mechanical stress generated during FUS procedures, we developed a finite element model (FEM) to simulate sonication using a single-element FUS transducer. We modeled soft tissue using a neo-Hookean hyperelastic constitutive behavior, offering a more realistic representation of tissue behavior compared to the linear elasticity assumptions commonly employed in ultrasound-based elastography techniques. Operational parameters were varied to simulate different acoustic powers of the transducer by applying mechanical surface pressure at various operating frequencies. The model depicted FUS wave propagation with amplified surface pressure at the focus, generating relevant focal pressures consistent with clinical setups. The focal beam size within the soft tissue material was characterized and exhibited dependency on the operating frequency of the transducer. As the FUS wave converged at the focus, an ARF was exerted, resulting in displacement and induced shear stress around the focal region, which were quantified. The displacement and shear stress that were analyzed were dependent on the applied transducer surface pressure. These findings deepen the understanding of the mechanics of low-intensity FUS and provide valuable insights into its shear-related effects due to displacement and deformation of the media.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomechanics and Modeling in Mechanobiology
Biomechanics and Modeling in Mechanobiology 工程技术-工程:生物医学
CiteScore
7.10
自引率
8.60%
发文量
119
审稿时长
6 months
期刊介绍: Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that (1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury, (2) identify and quantify mechanosensitive responses and their mechanisms, (3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and (4) report discoveries that advance therapeutic and diagnostic procedures. Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信