利用紫栓菌生物相容性漆酶解毒硫酸吲哚氧基(IS)和吲哚-3-乙酸(IAA)蛋白结合尿毒症毒素(PBUTs)的研究:原位同步成像、实验和计算研究。

IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sana Daneshamouz, Shaghayegh Saadati, Sishi Zhu, Denis Kalugin, Ahmed Shoker, Amira Abdelrasoul
{"title":"利用紫栓菌生物相容性漆酶解毒硫酸吲哚氧基(IS)和吲哚-3-乙酸(IAA)蛋白结合尿毒症毒素(PBUTs)的研究:原位同步成像、实验和计算研究。","authors":"Sana Daneshamouz, Shaghayegh Saadati, Sishi Zhu, Denis Kalugin, Ahmed Shoker, Amira Abdelrasoul","doi":"10.1007/s12010-025-05235-y","DOIUrl":null,"url":null,"abstract":"<p><p>The removal of protein-bound uremic toxins (PBUTs), such as indoxyl sulfate (IS) and indole-3-acetic acid (IAA), from hemodialysis (HD) patients remains a significant challenge due to their strong binding to serum proteins, such as albumin. This study aimed to evaluate the potential of using the enzyme laccase, derived from Trametes versicolor, for the decomposition and removal of IS and IAA during HD. Molecular docking was utilized to investigate the interactions between laccase and the toxins, identifying key functional groups involved. To assess the detoxification efficacy, liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) were employed, allowing for the identification of decomposition byproducts and their toxicity assessment. Additionally, in situ synchrotron radiation micro-computed tomography (SR-µCT) at the Canadian Light Source (CLS) was used to analyze the binding of human serum albumin (HSA) with IS and IAA before and after laccase treatment. Our findings revealed that laccase effectively decomposed IAA into five byproducts, including indole, as confirmed by GC-MS, while IS remained unaffected. The byproducts exhibited lower toxicity ratings than IAA and were more easily eliminated through HD. However, synchrotron-based μ-CT analysis showed reduced HSA-IAA adsorption on the HD membrane post-laccase treatment, with no impact on HSA-IS adsorption. Notably, the transformation of indole into IS in the liver suggests that laccase may not be suitable for IAA detoxification in HD. Despite the lack of expected outcomes, these results provide valuable insights into toxin-enzyme interactions and guide future research toward alternative strategies for PBUTs removal in HD.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on the Detoxification of Indoxyl Sulfate (IS) and Indole-3-Acetic Acid (IAA) Protein-Bound Uremic Toxins (PBUTs) Using Trametes versicolor Biocompatible Laccase: In Situ Synchrotron Imaging, Experimental and Computational Studies.\",\"authors\":\"Sana Daneshamouz, Shaghayegh Saadati, Sishi Zhu, Denis Kalugin, Ahmed Shoker, Amira Abdelrasoul\",\"doi\":\"10.1007/s12010-025-05235-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The removal of protein-bound uremic toxins (PBUTs), such as indoxyl sulfate (IS) and indole-3-acetic acid (IAA), from hemodialysis (HD) patients remains a significant challenge due to their strong binding to serum proteins, such as albumin. This study aimed to evaluate the potential of using the enzyme laccase, derived from Trametes versicolor, for the decomposition and removal of IS and IAA during HD. Molecular docking was utilized to investigate the interactions between laccase and the toxins, identifying key functional groups involved. To assess the detoxification efficacy, liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) were employed, allowing for the identification of decomposition byproducts and their toxicity assessment. Additionally, in situ synchrotron radiation micro-computed tomography (SR-µCT) at the Canadian Light Source (CLS) was used to analyze the binding of human serum albumin (HSA) with IS and IAA before and after laccase treatment. Our findings revealed that laccase effectively decomposed IAA into five byproducts, including indole, as confirmed by GC-MS, while IS remained unaffected. The byproducts exhibited lower toxicity ratings than IAA and were more easily eliminated through HD. However, synchrotron-based μ-CT analysis showed reduced HSA-IAA adsorption on the HD membrane post-laccase treatment, with no impact on HSA-IS adsorption. Notably, the transformation of indole into IS in the liver suggests that laccase may not be suitable for IAA detoxification in HD. Despite the lack of expected outcomes, these results provide valuable insights into toxin-enzyme interactions and guide future research toward alternative strategies for PBUTs removal in HD.</p>\",\"PeriodicalId\":465,\"journal\":{\"name\":\"Applied Biochemistry and Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biochemistry and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12010-025-05235-y\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-025-05235-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

清除血液透析(HD)患者体内的蛋白结合尿毒症毒素(PBUTs),如吲哚羟基硫酸酯(IS)和吲哚-3-乙酸(IAA),由于它们与血清蛋白(如白蛋白)有很强的结合,仍然是一个重大挑战。本研究的目的是评估在HD过程中,利用源自Trametes versicolor的漆酶来分解和去除IS和IAA的潜力。利用分子对接研究漆酶与毒素之间的相互作用,确定了所涉及的关键官能团。采用液相色谱-质谱联用(LC-MS)和气相色谱-质谱联用(GC-MS)对解毒效果进行评价,鉴定分解副产物并对其毒性进行评价。此外,采用加拿大光源(CLS)原位同步辐射微计算机断层扫描(SR-µCT)分析漆酶治疗前后人血清白蛋白(HSA)与IS和IAA的结合情况。我们的研究结果表明,漆酶有效地将IAA分解成五种副产物,包括吲哚,正如GC-MS所证实的那样,而IS则不受影响。副产物的毒性比IAA低,更容易通过HD消除。然而,基于同步加速器的μ-CT分析显示,漆酶处理后HD膜对HSA-IAA的吸附减少,对HSA-IS的吸附没有影响。值得注意的是,吲哚在肝脏中转化为IS表明漆酶可能不适合HD患者的IAA解毒。尽管缺乏预期的结果,但这些结果为毒素-酶相互作用提供了有价值的见解,并指导了未来对HD中PBUTs去除的替代策略的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation on the Detoxification of Indoxyl Sulfate (IS) and Indole-3-Acetic Acid (IAA) Protein-Bound Uremic Toxins (PBUTs) Using Trametes versicolor Biocompatible Laccase: In Situ Synchrotron Imaging, Experimental and Computational Studies.

The removal of protein-bound uremic toxins (PBUTs), such as indoxyl sulfate (IS) and indole-3-acetic acid (IAA), from hemodialysis (HD) patients remains a significant challenge due to their strong binding to serum proteins, such as albumin. This study aimed to evaluate the potential of using the enzyme laccase, derived from Trametes versicolor, for the decomposition and removal of IS and IAA during HD. Molecular docking was utilized to investigate the interactions between laccase and the toxins, identifying key functional groups involved. To assess the detoxification efficacy, liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) were employed, allowing for the identification of decomposition byproducts and their toxicity assessment. Additionally, in situ synchrotron radiation micro-computed tomography (SR-µCT) at the Canadian Light Source (CLS) was used to analyze the binding of human serum albumin (HSA) with IS and IAA before and after laccase treatment. Our findings revealed that laccase effectively decomposed IAA into five byproducts, including indole, as confirmed by GC-MS, while IS remained unaffected. The byproducts exhibited lower toxicity ratings than IAA and were more easily eliminated through HD. However, synchrotron-based μ-CT analysis showed reduced HSA-IAA adsorption on the HD membrane post-laccase treatment, with no impact on HSA-IS adsorption. Notably, the transformation of indole into IS in the liver suggests that laccase may not be suitable for IAA detoxification in HD. Despite the lack of expected outcomes, these results provide valuable insights into toxin-enzyme interactions and guide future research toward alternative strategies for PBUTs removal in HD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Biochemistry and Biotechnology
Applied Biochemistry and Biotechnology 工程技术-生化与分子生物学
CiteScore
5.70
自引率
6.70%
发文量
460
审稿时长
5.3 months
期刊介绍: This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities. In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信